9 research outputs found

    Bidirectional Graph Reasoning Network for Panoptic Segmentation

    Full text link
    Recent researches on panoptic segmentation resort to a single end-to-end network to combine the tasks of instance segmentation and semantic segmentation. However, prior models only unified the two related tasks at the architectural level via a multi-branch scheme or revealed the underlying correlation between them by unidirectional feature fusion, which disregards the explicit semantic and co-occurrence relations among objects and background. Inspired by the fact that context information is critical to recognize and localize the objects, and inclusive object details are significant to parse the background scene, we thus investigate on explicitly modeling the correlations between object and background to achieve a holistic understanding of an image in the panoptic segmentation task. We introduce a Bidirectional Graph Reasoning Network (BGRNet), which incorporates graph structure into the conventional panoptic segmentation network to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes. In particular, BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level, respectively. To establish the correlations between separate branches and fully leverage the complementary relations between things and stuff, we propose a Bidirectional Graph Connection Module to diffuse information across branches in a learnable fashion. Experimental results demonstrate the superiority of our BGRNet that achieves the new state-of-the-art performance on challenging COCO and ADE20K panoptic segmentation benchmarks.Comment: CVPR202

    The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs

    Get PDF
    Four novel aggregation-induced emission (AIE)-active luminogens (p-DPDECZ, p-DBPDECZ, m-DPDECZ and m-DBPDECZ) with triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups have been synthesized. Their structures are fully characterized using elemental analysis, mass spectrometry and proton nuclear magnetic resonance spectroscopy. The thermal stabilities, photophysical properties, electronic structures, and electrochemical properties of these molecules are investigated systematically using thermal analysis, UV-vis absorption spectroscopy, fluorescence spectroscopy, theoretical calculation and electrochemical methods. The effects of donor–acceptor interaction and conjugation degree on the photoluminescent and electroluminescent properties of these compounds are investigated. The results show that these donor–AIE–acceptor type compounds exhibit good thermal stability and electrochemical stability as well as AIE properties. Non-doped fluorescent OLEDs fabricated by using para-linked p-DPDECZ as an emitting layer emits a green light with a turn-on voltage of 4.8 V, a maximum brightness of 30210 cd m-2 and a maximum current efficiency of 9.96 cd A-1. While the OLED prepared with meta-linked m-DBPDECZ exhibits efficient blue light emission with a maximum current efficiency of 4.49 cd A-1 and a maximum luminance of 16410 cd m-2. The electroluminescence properties of these compounds demonstrate their potential application in OLEDs

    Continual Object Detection via Prototypical Task Correlation Guided Gating Mechanism

    Full text link
    Continual learning is a challenging real-world problem for constructing a mature AI system when data are provided in a streaming fashion. Despite recent progress in continual classification, the researches of continual object detection are impeded by the diverse sizes and numbers of objects in each image. Different from previous works that tune the whole network for all tasks, in this work, we present a simple and flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTing mechAnism (ROSETTA). Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks. In this way, various knowledge can be successively memorized by storing their corresponding sub-model weights in this system. To make ROSETTA automatically determine which experience is available and useful, a prototypical task correlation guided Gating Diversity Controller(GDC) is introduced to adaptively adjust the diversity of gates for the new task based on class-specific prototypes. GDC module computes class-to-class correlation matrix to depict the cross-task correlation, and hereby activates more exclusive gates for the new task if a significant domain gap is observed. Comprehensive experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance on both task-based and class-based continual object detection

    Solution-processable, star-shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs

    No full text
    Organic light-emitting diodes (OLEDs) based on solution-processable small molecules are attracting intense attention, as such technology combines the merits of low-cost solution processability of polymers and finely defined structural uniformity of small molecules. Small-molecule tetraphenylethene (TPE) derivatives are excellent solid-state light emitters featuring aggregation-induced emission (AIE) characteristics, however those that can be used in solution-processable devices are very rare. To address this issue, herein, a series of novel star-shaped bipolar TPE derivatives are synthesized and characterized. Their thermal stabilities, photophysical properties, electronic structures, electrochemical behaviors, and application in solution-processed OLEDs are investigated systematically. These luminogens exhibit AIE characteristics and excellent fluorescence quantum yields up to 95% in the solid state. Nondoped OLEDs are successfully fabricated through a spin-coating method. The solution-processed OLEDs [ITO (130 nm)/PEDOT:PSS (40 nm)/emitter (70 nm)/TPBi (30 nm)/Ba (4 nm)/Al (120 nm)] adopting star- shaped TPE derivatives as light-emitting layers show peak luminance of 11665 cd m-2 and high electroluminescence (EL) efficiencies up to 8.3 cd A-1, 2.6 % and 7.5 lm W-1. These results demonstrate a promising avenue towards efficient nondoped OLEDs based on solution-processable AIE-active small molecules

    Long-Term Tracking of the Osteogenic Differentiation of Mouse BMSCs by Aggregation-Induced Emission Nanoparticles

    No full text
    Bone marrow-derived mesenchymal stem cells (BMSCs) have shown great potential for bone repair due to their strong proliferation ability and osteogenic capacity. To evaluate and improve the stem cell-based therapy, long-term tracking of stem cell differentiation into bone-forming osteoblasts is required. However, conventional fluorescent trackers such as fluorescent proteins, quantum dots, and fluorophores with aggregation-caused quenching (ACQ) characteristics have intrinsic limitations of possible interference with stem cell differentiation, heavy metal cytotoxicity, and self-quenching at a high labeling intensity. Herein, we developed aggregation-induced emission nanoparticles decorated with the Tat peptide (AIE-Tat NPs) for long-term tracking of the osteogenic differentiation of mouse BMSCs without interference of cell viability and differentiation ability. Compared with the ability of the commercial Qtracker 655 for tracking of only 6 passages of mouse BMSCs, AIE-Tat NPs have shown a much superior performance in long-term tracking for over 12 passages. Moreover, long-term tracking of the osteogenic differentiation process of mouse BMSCs was successfully conducted on the biocompatible hydroxyapatite scaffold, which is widely used in bone tissue engineering. Thus, AIE-Tat NPs have promising applications in tracking stem cell fate for bone repair

    Improving Electron Mobility of Tetraphenylethene-Based AIEgens to Fabricate Nondoped Organic Light-Emitting Diodes with Remarkably High Luminance and Efficiency

    No full text
    Robust light-emitting materials with strong solid-state fluorescence as well as fast and balanced carrier transporting ability are crucial to achieve high-performance organic light-emitting diodes (OLEDs). In this contribution, two linear tetraphenylethene (TPE) derivatives (TPE-TPAPBI and TPE-DPBI) that are functionalized with hole-transporting triphenylamine and/or electron-transporting 1,2-diphenyl-1<i>H</i>-benzimidazole groups are synthesized and fully characterized. Both TPE-TPAPBI and TPE-DPBI have aggregation-induced emission attributes and excellent photoluminescence quantum yields approaching 100% in vacuum deposited films. They also possess good thermal property, giving high decomposition temperatures (480 and 483 °C) and glass-transition temperatures (141 and 157 °C). TPE-TPAPBI and TPE-DPBI present high electron mobilities of 1.80 × 10<sup>–5</sup> and 1.30 × 10<sup>–4</sup> cm<sup>2</sup> V <sup>–1</sup> s<sup>–1</sup>, respectively, at an electric field of 3.6 × 10<sup>5</sup> V cm<sup>–1</sup>, which are comparable or even superior to that of 1,3,5-tri­(1-phenylbenzimidazol-2-yl)­benzene. The nondoped OLED device employing TPE-TPAPBI as active layer performs outstandingly, affording ultrahigh luminance of 125 300 cd m<sup>–2</sup>, and excellent maximum external quantum, power and current efficiencies of 5.8%, 14.6 lm W<sup>–1</sup>, and 16.8 cd A<sup>–1</sup>, respectively, with very small roll-offs, demonstrating that TPE-TPAPBI is a highly promising luminescent material for nondoped OLEDs

    High-Performance Doping-Free Hybrid White OLEDs Based on Blue Aggregation-Induced Emission Luminogens

    No full text
    Doping-free white organic light-emitting diodes (DF-WOLEDs) have aroused research interest because of their simple properties. However, to achieve doping-free hybrid WOLEDs (DFH-WOLEDs), avoiding aggregation-caused quenching is challenging. Herein, blue luminogens with aggregation-induced emission (AIE) characteristics, for the first time, have been demonstrated to develop DFH-WOLEDs. Unlike previous DFH-WOLEDs, both thin (<1 nm) and thick (>10 nm) AIE luminogen (AIEgen) can be used for devices, enhancing the flexibility. Two-color devices show (i) pure-white emission, (ii) high CRI (85), and (iii) high efficiency. Particularly, 19.0 lm W<sup>1–</sup> is the highest for pure-white DF-WOLEDs, while 35.0 lm W<sup>1–</sup> is the best for two-color hybrid WOLEDs with CRI ≥ 80. A three-color DFH-WOLED shows broad color-correlated temperature span (2301–11628 K), (i) the first sunlight-like OLED (2500–8000 K) operating at low voltages, (ii) the broadest span among sunlight-like OLED, and (iii) possesses comparable efficiency with the best doping counterpart. Another three-color DFH-WOLED exhibits CRI > 90 at ≥3000 cd m<sup>–2</sup>, (i) the first DF-WOLED with CRI ≥ 90 at high luminances, and (ii) the CRI (92.8) is not only the highest among AIE-based WOLEDs but also the highest among DF-WOLEDs. Such findings may unlock an alternative concept to develop DFH-WOLEDs
    corecore