44 research outputs found

    A PM10 chemically characterised nation-wide dataset for Italy. Geographical influence on urban air pollution and source apportionment

    Get PDF
    : Urban textures of the Italian cities are peculiarly shaped by the local geography generating similarities among cities placed in different regions but comparable topographical districts. This suggested the following scientific question: can such different topographies generate significant differences on the PM10 chemical composition at Italian urban sites that share similar geography despite being in different regions? To investigate whether such communalities can be found and are applicable at Country-scale, we propose here a novel methodological approach. A dataset comprising season-averages of PM10 mass concentration and chemical composition data was built, covering the decade 2005-2016 and referring to urban sites only (21 cities). Statistical analyses, estimation of missing data, identification of latent clusters and source apportionment modelling by Positive Matrix Factorization (PMF) were performed on this unique dataset. The first original result is the demonstration that a dataset with atypical time resolution can be successfully exploited as an input matrix for PMF obtaining Country-scale representative chemical profiles, whose physical consistency has been assessed by different tests of modelling performance. Secondly, this dataset can be considered a reference repository of season averages of chemical species over the Italian territory and the chemical profiles obtained by PMF for urban Italian agglomerations could contribute to emission repositories. These findings indicate that our approach is powerful, and it could be further employed with datasets typically available in the air pollution monitoring networks

    Atlas of the clinical genetics of human dilated cardiomyopathy

    Get PDF
    [Abstract] Aim. Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. Methods and results. In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. Conclusion. This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.Hôpitaux de Paris; PHRC AOM0414

    Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city

    No full text
    Mass concentrations of PM2.5, mineral dust, organic carbon (OC) and elemental carbon (EC), water-soluble organic carbon (WSOC), sea salts and anthropogenic metals have been studied in a city-port of south Italy (Brindisi). This city is characterized by different emission sources (ship, vehicular traffic, biomass burning and industrial emissions) and it is an important port and industrial site of the Adriatic sea. Based on diagnostic ratios of carbonaceous species we assess the presence of biomass burning emissions (BBE), fossil fuel emissions (FFE) and ship emission (SE). Our proposed conversion factors from OC to OM are higher than those reported in the literature for urban site: the reason of this could be due to the existence of aged combustion aerosols during the sampling campaign (WSOC/OC = 0.6 ± 0.3)

    A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium

    No full text
    Abstract Selective benzaldehyde reduction to benzyl alcohol was accomplished using a new catalyst based on Pd dispersed on mayenite (Ca12Al14O33) support. In this work, mayenite has been doped in its nanocages with H- ions to investigate its role in the reduction of aldehydes. Benzaldehyde reduction was observed in H2 atmosphere (120°C, 8 atm). Catalytic performances compared to commercial Pd/C catalyst are superior in terms of selectivity and comparable as activity

    Molecular Responses to Cadmium Exposure in Two Contrasting Durum Wheat Genotypes

    No full text
    Cadmium is a heavy metal that can be easily accumulated in durum wheat kernels and enter the human food chain. Two near-isogenic lines (NILs) with contrasting cadmium accumulation in grains, High-Cd or Low-Cd (H-Cd NIL and L-Cd NIL, respectively), were used to understand the Cd accumulation and transport mechanisms in durum wheat roots. Plants were cultivated in hydroponic solution, and cadmium concentrations in roots, shoots and grains were quantified. To evaluate the molecular mechanism activated in the two NILs, the transcriptomes of roots were analyzed. The observed response is complex and involves many genes and molecular mechanisms. We found that the gene sequences of two basic helix–loop–helix (bHLH) transcription factors (bHLH29 and bHLH38) differ between the two genotypes. In addition, the transporter Heavy Metal Tolerance 1 (HMT-1) is expressed only in the low-Cd genotype and many peroxidase genes are up-regulated only in the L-Cd NIL, suggesting ROS scavenging and root lignification as active responses to cadmium presence. Finally, we hypothesize that some aquaporins could enhance the Cd translocation from roots to shoots. The response to cadmium in durum wheat is therefore extremely complex and involves transcription factors, chelators, heavy metal transporters, peroxidases and aquaporins. All these new findings could help to elucidate the cadmium tolerance in wheat and address future breeding programs

    An archaeometric approach about the study of medieval glass from Siponto (Foggia, Italy)

    No full text
    In this paper a low-vacuum scanning electron microscope (SEM) coupled with an energy-dispersive X-ray spectrometer (EDX) was used to investigate the alteration processes that occur on silica-soda-lime glass exposed to soil materials and dated from XI to second half of XIII sec. The chemical data were collected for altered glass gel and fresh glass. In order to study the influence of chemical composition on weathering process, 16 glasses have been selected on the basis of the chemical characterization and on the basis of the different corrosion processes present on the fragments. Six selected samples had been produced with the use of natron as fluxer and 10 samples with the use of plant ash as fluxer. The analysed pieces come from Siponto excavations (Foggia, Italy) and they include feet and rims of chalices, fragments of lamps and of globular bottles. (C) 2008 Elsevier B.V. All rights reserved

    XPS surface chemical characterization of atmospheric particles of different sizes

    No full text
    Abstract Surface chemical composition of particles has a key role in determining the reactivity and optical properties of atmospheric aerosol. This composition depend on the particles sources and formation processes and it influences human health and climate. In this work, the X-ray photoelectron spectroscopy (XPS) has been used for the systematic surface characterization of atmospheric particles of different sizes, collected using a 10-stage MOUDI-II rotating cascade impactor in an urban background site. The high resolution XPS spectra allowed to distinguish different organic functional groups (C-C/CC, -C-O, -CO/-C(O)N, -C(O)O, C-O3=) and to speciate the detectable hetero-elements, sulphur (S-O42-, sulphone and sulphide compounds), nitrogen (N-H4+, N-O3-, N-O2- and organic-nitrogen compounds), sodium (Na+) and chlorine (Cl-) species. Significant differences in particles belonging to accumulation (small particles) and coarse (large particles) modes were observed being due to the formation processes and sources from which particles originated. The oxygen concentrations is inversely correlated with carbon concentrations, however, the content of oxidized organic carbon is not correlated with oxygen content confirming that the oxygen increment observed in large particles can likely be attributed to the contribution of inorganic species (crustal origin). The speciation of nitrogen showed ammonium only in the accumulation mode and nitrate only in coarse mode excluding the presence of ammonium nitrate of secondary origin in the area studied. A correlation of Na and Cl was attributed to the marine contribution with an excess of Cl on the surface correlated with the depletion of Cl observed in the bulk of particles. © 2015 Elsevier Ltd

    Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst

    Get PDF
    The catalytic oxidation of gaseous trichloroethylene (TCE), mediated by a cost effective mayenite support, was studied in a fixed bed reactor. Mayenite was synthetized by using hydrothermal method and characterized before and after catalytic oxidation experiments by using XRD, N 2 -sorption (BET), SEM-EDX, TEM and FTIR; the reaction products were analyzed by means of GC–MS, IC and a IR-based CO 2 probe. The results showed that mayenite promoted the total oxidation of TCE in the temperature range 300–500 °C, where TCE was quantitatively converted in CO 2 and chlorine. The mayenite catalyst showed high recyclability and could be used for several reaction cycles without any loss of activity and selectivity. Owing to its characteristics, mayenite was found to be a promising catalyst for the TCE total conversion and remediation
    corecore