134 research outputs found
A Dual-Fluorescent Composite of Graphene Oxide and Poly(3-Hexylthiophene) Enables the Ratiometric Detection of Amines
A composite prepared by grafting a conjugated polymer, poly(3-hexylthiophene) (P3HT), to the surface of graphene oxide was shown to result in a dual-fluorescent material with tunable photoluminescent properties. Capitalizing on these unique features, a new class of graphene-based sensors that enables the ratiometric fluorescence detection of amine-based pollutants was developed. Moreover, through a detailed spectroscopic study, the origin of the optical properties of the aforementioned composite was studied and was found to be due to electronic decoupling of the conjugated polymer from the GO. The methodology described herein effectively overcomes a long-standing challenge that has prevented graphene based composites from finding utility in sensing and related applications.Meng, Dongli, Shaojun Yang, Dianming Sun, Yi Zeng, Jinhua Sun, Yi Li, Shouke Yan, Yong Huang, Christopher W. Bielawski, and Jianxin Geng. "A dual-fluorescent composite of graphene oxide and poly (3-hexylthiophene) enables the ratiometric detection of amines." Chemical Science 5, no. 8 (Apr., 2014): 3130-3134.Chemistr
Core-Shell Structured Polyamide 66 Nanofibers with Enhanced Flame Retardancy
We report the preparation of polymer nanofibers with enhanced flame retardancy by coaxial electrospinning polyamide 66 (PA 66) and nanoscale graphene hybridized with red phosphorus (NG-RP). Transmission electron microscopy and energy-dispersive X-ray spectroscopy revealed that the nanofibers contained a NG-RP-based core surrounded by a PA 66 shell. The flame-retardant characteristics of the nanofibers were investigated by thermal gravimetric analysis, micro combustion calorimetry, and a series of vertical flame tests. The encapsulation of the NG-RP not only enhanced the flame-retardant characteristics of the nanofibers, but also improved their mechanical properties while maintaining the color and luster of the polymer, making the resultant nanofibers appropriate for use in a wide range of applications
Unveiling the origin of catalytic sites of Pt nanoparticles decorated on oxygen-deficient vanadium-doped cobalt hydroxide nanosheet for hybrid sodium-air batteries
Highly active bifunctional electrocatalysts are crucial for improving the performance of rechargeable metal-air batteries. However, most reported bifunctional electrocatalysts feature poor electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Here, we have reported the first-ever study of an effective one-step reduction-assisted exfoliation method to exfoliate bulk vanadium-doped cobalt hydroxide (V-doped Co(OH)2, denoted as V-Co(OH)2) into ultrathin nanosheets with abundant oxygen vacancies (V-Co(OH)2-Ov) and simultaneously anchor them with highly dispersed ultrafine Pt nanoparticles (NPs) with a nominal size of 0.8-2.4 nm (denoted as Pt/V-Co(OH)2-Ov). The Pt/V-Co(OH)2-Ov catalyst exhibits improved catalytic performance in ORR/OER. X-ray absorption spectroscopy analysis and theoretical calculations reveal the strong interfacial electronic interactions between Pt NPs and V-Co(OH)2-Ov, which synergistically improves oxygen intermediates' adsorption/desorption, enhancing the ORR and OER performance. Using Pt/V-Co(OH)2-Ov as a catalyst in the air cathode, a hybrid sodium-air battery displays a record value of an ultralow charging-discharging voltage gap of 0.07 V at a current density of 0.01 mA cm-2 with remarkable stability of up to 1000 cycles. This reduction-assisted exfoliation approach provides a new strategy to generate oxygen vacancies in metal hydroxides, which act as anchoring sites for deposition of sub-nanometal NPs via a strong interfacial effect
Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction
Structural reconstruction of nanomaterials offers a fantastic way to regulate the electronic structure of active sites and promote their catalytic activities. However, how to properly facilitate surface reconstruction to overcome large overpotential that stimulate the surface reconstruction has remained elusive. Herein, we adopt a facile approach to activate surface reconstruction on Ni(OH) 2 by incorporating F anions to achieve electro-derived structural oxidation process and further boost its oxygen evolution reaction (OER) activity. Ex situ Raman and X-ray photoemission spectroscopy studies indicate that F ions incorporation facilitated surface reconstruction and promotes the original Ni(OH) 2 transformed into a mesoporous and amorphous F-NiOOH layer during the electrochemical process. Density functional theory (DFT) calculation reveals that this self-reconstructed NiOOH induces a space-charge effect on the p-n junction interface, which not only promotes the absorption of intermediates species (*OH, *O, and *OOH) and charge-transfer process during catalysis, but also leads to a strong interaction of the p-n junction interface to stabilize the materials. This work opens up a new possibility to regulate the electronic structure of active sites and promote their catalytic activities. [Figure not available: see fulltext.
Single-Atom Catalyst Aggregates: Size-Matching is Critical to Electrocatalytic Performance in Sulfur Cathodes
Electrocatalysis is critical to the performance displayed by sulfur cathodes. However, the constituent electrocatalysts and the sulfur reactants have vastly different molecular sizes, which ultimately restrict electrocatalysis efficiency and hamper device performance. Herein, the authors report that aggregates of cobalt single-atom catalysts (SACs) attached to graphene via porphyrins can overcome the challenges associated with the catalyst/reactant size mismatch. Atomic-resolution transmission electron microscopy and X-ray absorption spectroscopy measurements show that the Co atoms present in the SAC aggregates exist as single atoms with spatially resolved dimensions that are commensurate the sulfur species found in sulfur cathodes and thus fully accessible to enable 100% atomic utilization efficiency in electrocatalysis. Density functional theory calculations demonstrate that the Co SAC aggregates can interact with the sulfur species in a synergistic manner that enhances the electrocatalytic effect and promote the performance of sulfur cathodes. For example, Li-S cells prepared from the Co SAC aggregates exhibit outstanding capacity retention (i.e., 505 mA h g(-1) at 0.5 C after 600 cycles) and excellent rate capability (i.e., 648 mA h g(-1) at 6 C). An ultrahigh area specific capacity of 12.52 mA h cm(-2) is achieved at a high sulfur loading of 11.8 mg cm(-2)
- …