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A dual-fluorescent composite of graphene oxide
and poly(3-hexylthiophene) enables the ratiometric
detection of amines†

Dongli Meng,a Shaojun Yang,a Dianming Sun,b Yi Zeng,a Jinhua Sun,a Yi Li,a

Shouke Yan,b Yong Huang,a Christopher W. Bielawskicd and Jianxin Geng*a

A composite prepared by grafting a conjugated polymer, poly(3-hexylthiophene) (P3HT), to the surface of

graphene oxide was shown to result in a dual-fluorescent material with tunable photoluminescent

properties. Capitalizing on these unique features, a new class of graphene-based sensors that enables

the ratiometric fluorescence detection of amine-based pollutants was developed. Moreover, through a

detailed spectroscopic study, the origin of the optical properties of the aforementioned composite was

studied and was found to be due to electronic decoupling of the conjugated polymer from the GO. The

methodology described herein effectively overcomes a long-standing challenge that has prevented

graphene based composites from finding utility in sensing and related applications.
Introduction

Fluorescent graphene based materials, particularly those based
on graphene oxide (GO), have recently attracted considerable
attention on account of their high chemical stability, bio-
compatibility, and excitation induced nonlinear optical prop-
erties.1 The origin of the aforementioned uorescence
phenomena has been attributed to the relatively large band gap
associated with isolated domains of sp2 hybridized carbons
dispersed in a sp3 hybridized carbon–oxygen matrix2 as well as
the coupling of localized electronic states found in defects.3

Regardless, many of the uorescence properties of GO,
including its emission wavelength, are closely related to the
material's surface chemistry which can be conveniently tuned
through chemical modication.2b,c,4 Similarly, photo-
luminescence (PL) properties may be realized through the
passivation of residual epoxy, carboxyl, and other functional
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groups that facilitate non-radiative recombination of localized
electron–hole pairs.2b,5 Thus far, saturated and other non-
functional polymers, such as various polyolens and
poly(ethylene glycol), have been used to passivate GO,1a,2b,3b,6

primarily to limit any potentially undesirable photoinduced
electron transfer processes.7

Herein, we show that a composite prepared by graing a
conjugated polymer, poly(3-hexylthiophene) (P3HT), to the
surface of GO results in a material with enhanced PL properties,
including tunable photoemission and dual-uorescence char-
acteristics (Scheme 1a). Capitalizing on this unique combina-
tion of features, the aforementioned material was used as a
uorescence sensor to detect amines in a ratiometric fashion.
We will also demonstrate that the methodology described below
effectively overcomes a long-standing challenge that has cur-
tailed the use of graphene based composites in sensing and
related applications.
Scheme 1 Structures of the GO/P3HT and GO/HA composites.

This journal is © The Royal Society of Chemistry 2014
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Results and discussion

The GO composite was synthesized by condensing the residual
carboxylic acid groups present on the GO surface with amino-
terminated P3HT. The composite was designated as GO/P3HT.
As a control, a non-functional analogue, GO/HA, was prepared
by condensing 1-hexylamine with GO (Scheme S1†). Details of
the reactions are included in the ESI.† The graing densities of
the aforementioned materials were controlled by adjusting the
initial amine : GO ratio, as determined by thermogravimetric
analysis (Fig. S1†). The GO/P3HT and GO/HA composites
showed improved dispersibilities in common organic solvents,
including chloroform, tetrahydrofuran, and chlorobenzene.8

With GO/P3HT and GO/HA in hand, the UV-visible and PL
spectra of the composites were recorded in order to ascertain
the effect of the gras on the optical properties of the resulting
materials (Fig. 1). While a suspension of GO in water exhibited
an absorbance at 234 nm and a shoulder peak at ca. 300 nm,
due to the p–p* and n–p* transitions of the C]C and C]O
bonds, respectively, the signals of thep–p* transitionmeasured
for the suspensions of the GO/P3HT or GO/HA composites in
chloroform were bathochromically shied to ca. 270 nm.
Additionally, the GO/P3HT composite displayed three addi-
tional absorbance maxima at 457, 586, and 642 nm, which were
attributed to the P3HT component (Fig. 1a), although these
signals appeared to be split which may reect a stacked, poly-
meric structure9 due to the GO induced assembly10 or graing
induced aggregation.11,‡ As summarized in Fig. 1b, the GO/HA
composite showed a single PL emission that peaked at 523 nm
upon excitation at 460 nm; such uorescence properties were
similar to those observed in other materials derived from GO.6

In contrast, upon excitation at 340 nm, the GO/P3HT composite
exhibited well-resolved PL signals centred at 421 and 578 nm.
The former was attributed to the uorescent centres contained
within the GO scaffold, whereas the latter was assigned to the
P3HT component. As shown in the inset of Fig. 1b, the
suspensions of the GO/HA and GO/P3HT composites appeared
green and red-purple, respectively, upon excitation with light at
the corresponding wavelength. The blue-shied PL emission of
the GO component in the GO/P3HT composite was attributed to
Fig. 1 (a) UV-visible absorption spectra of a GO suspension in
deionizedwater (0.03mgmL�1), and suspensions of the GO/P3HT and
GO/HA composites in chloroform (0.03 mg mL�1). (b) PL spectra of
suspensions of the GO/P3HT composite (lex ¼ 340 nm) and the GO/
HA composite (lex ¼ 460 nm). Inset: images of the fluorescence of the
GO/P3HT and GO/HA composite suspensions excited with corre-
sponding wavelengths.

This journal is © The Royal Society of Chemistry 2014
the passivation of the GO surface via the charge transfer from
P3HT12 and/or distortion of the sp2 domains due to chemical
modication. In control experiments, the unmodied GO did
not show PL emission. This was not in agreement with some
references,13 probably due to the oxidation process used to
synthesize the GO. A mixture of GO and P3HT was also physi-
cally prepared. The PL emission of P3HT was quenched by GO
(Fig. S3†) but the PL features ascribed to the GO component in
the GO/P3HT composite were not observed, due to the inexis-
tence of the assembly structures of P3HT in the mixture of GO
and P3HT.

Next, efforts were directed toward gaining a deeper under-
standing of the dual-uorescence properties displayed by the
aforementioned GO/P3HT composite. The PL quantum yield of
the GO component in the GO/P3HT composite was measured to
be 3.8% when compared to a rhodamine 6G reference; in
contrast, the quantum yield of the GO/HA composite was
measured to be 1.8% under similar conditions. The enhanced
PL emission observed in the former was ascribed to photo-
induced electron transfer from P3HT to GO,14 which was also
conrmed by a PL lifetimemeasurement. As shown in Fig. 2, the
lifetime of the PL emission at 421 nm for the GO/P3HT
composite was measured to be 1.8 ns whereas the lifetime of the
emission from the GO/HA composite was 1.5 ns; both of these
values were in agreement with literature reports.2c Collectively,
these data revealed that the PL emission at 421 nm was due to
the uorescent centres contained within the GO scaffold.
Moreover, the PL emission at 578 nm for the GO/P3HT
composite was found to display a PL lifetime of 180 ps, which is
shorter than that for pure P3HT (460 ps), a result that reected
the photo-induced electron transfer from P3HT to GO in the
GO/P3HT composite.

Although covalent interactions between the P3HT chains
and the GO scaffold were reported to quench uorescence,7a,15

the P3HT appeared to be decoupled from potential intra- or
intermolecular exciton migration pathways as evidenced by the
Fig. 2 PL decay curves of (a) the GO/HA composite, (b) the PL
emission at 421 nm for the GO/P3HT composite, (c) the PL emission at
578 nm for the GO/P3HT composite, (d) pure P3HT.

Chem. Sci., 2014, 5, 3130–3134 | 3131
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Fig. 4 Band structure calculations of the GO/HA composite: (a) three
different structural models, (b) ball-and-spoke representation of (2), (c)
molecular orbital energy diagram of (2), (d) molecular orbitals of (2).
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two sets of absorption signals observed in the UV-visible
absorption spectrum (Fig. 1a).16 Indeed, the optical properties
of the P3HT segments appeared to function independently to
those displayed by the GO.

Since excitation dependent and independent PL emissions
have been reported for other GO derived materials,2b,3b,17

subsequent efforts were directed toward comparing the PL
properties of the aforementioned composites aer excitation at
various wavelengths. As shown in Fig. 3a and b, the maximum
of the GO-derived photoemission did not signicantly change
aer excitation at wavelengths ranging from 300 to 370 nm for
the GO/P3HT composite and from 300 to 480 nm for the GO/HA
composite. The consistent energy of the PL emission may be
due to the relatively uniform size of the sp2 domains present in
the GO component, which may cause the nano-sized sp2

domains to function in a manner consistent with a small
molecule chromophore. Conversely, the intensity of the PL
emission of the GO component was found to vary as a function
of the excitation wavelength, with the strongest PL emission
recorded aer excitation at 340 nm (Fig. 3c). Moreover, the
relationship between the intensity of the PL emission and the
excitation wavelength was in agreement with the PL excitation
(PLE) spectrum recorded at 421 nm. The single peak recorded in
the PLE spectrum of the GO/P3HT composite may be related to
various electronic structures present on the surface of the
material. For comparison, the PLE spectrum of the GO/HA
composite, recorded aer excitation at 523 nm, displayed three
signals at 309, 359, and 465 nm (Fig. 3d), which were attributed
to three unique electron transition processes.

As summarized in Fig. 4, the aforementioned assignments
were supported by theoretical calculations.18 Fig. 4a displays
three structural models of the GO/HA composites, wherein the
hexyl groups were connected to the GO basal plane at different
positions. In these models, the C : O ratio and the number of
Fig. 3 PL spectra of suspensions of (a) the GO/P3HT composite and
(b) the GO/HA composite excited with various wavelengths (indicated).
(c) PLE spectrum of the GO/P3HT composite (solid line) and the
intensity of the PL emission at 421 nm as a function of the excitation
wavelength (squares). (d) PLE spectrum of the GO/HA composite (solid
line) and the intensity of the PL emission at 523 nm as a function of the
excitation wavelength (squares).

3132 | Chem. Sci., 2014, 5, 3130–3134
substituent hexyl groups were determined based on XPS data.
Because the electronic orbitals were localized on the conjugated
graphene sheets, the orbital energy levels calculated for these
structures were found to be similar; as such, the results of
structure (2), which is shown in Fig. 4b, are discussed below. As
summarized in Fig. 4c, the energy differences between HOMO/
H�1 and LUMO/L+1 range from 2.45 to 2.66 eV, and may be
assigned to the peak at 465 nm recorded in the PLE spectrum
(Fig. 3d). Likewise, the energy differences between HOMO/H�1
and L+2/L+3, as well as H�2/H�3 and LUMO/L+1, range from
3.31 to 3.47 eV, and may be attributed to the peak recorded at
359 nm. Finally, the signal at 309 nm can be assigned to the
energy differences between H�2/H�3 and L+2/L+3, which
range from 4.20 to 4.51 eV. Thus, upon excitation, the electrons
appear to relax to a low-lying LUMO and then to a lower energy
level concomitant with PL emission.

In parallel, the molecular orbital energy levels of a GO/P3HT
composite were also calculated and compared to the results
described above. In order to simply the calculations,
sexithiophene was used in lieu of a high molecular weight P3HT
chain. As summarized in Fig. S4,† the differences between the
molecular orbital energy levels such as the HOMO, H�1, H�2,
and H�3, as well as the LUMO, L+1, L+2, and L+3 are not
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Normalized PL spectra of the GO/P3HT composite (lex ¼ 340
nm) in the presence of various concentrations of (a) aniline and (c)
nitrobenzene. Intensity ratio IP/IG plotted as function of the concen-
tration of (b) aniline and (d) nitrobenzene.
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separated as greatly as those calculated for the GO/HA
composite. As such, the conjugated substituent is electronically
coupled to the graphene sheets and explains the single peak
recorded in the PLE spectrum of the GO/P3HT composite.

The morphologies of the aforementioned GO/P3HT
composite were also studied using transmission electron
microscopy (TEM). As summarized in Fig. 5, the GO/P3HT
composite exhibited a broad distribution of sizes that included
sheets of ca. 100 nm in size and particles of ca. 10 nm in
diameter. The small sized particles may have been formed
during the amidation reaction since no such sized particles
were observed in unmodied samples of GO. In addition, the
GO/P3HT composite showed rough surfaces and high-contrast
edges, which may be due to the higher graing density near the
holes in the surfaces and at the edges of the GO sheets.19 Similar
morphologies and size distributions were also observed upon
TEM analysis of the GO/HA composite (Fig. S5†). Further anal-
ysis of the GO/P3HT composite using confocal microscopy
(Fig. S6†) revealed that both the large-sized sheets and the
small-sized particles were uorescent, and that the signals
derived from the large-sized sheets were of relatively higher
intensity.

Finally, we explored the application of our dual-uorescent
GO/P3HT composite as a ratiometric probe for aniline and
nitrobenzene. Materials which display ratiometric uorescence
responses based on the intensity ratio of two different PL
emissions are oen advantageous for use in sensors because
the detection process is quantitative and independent of the
probe concentration.20 While aniline and nitrobenzene are
valued feedstocks and widely used in the chemical industry,
they display carcinogenic and mutagenic properties; thus, rapid
and quantitative methods for their detection remains an
important analytical target. Currently, the detection of aniline
and nitrobenzene is commonly performed by using labour and
cost intensive spectrophotometric and chromatographic based
techniques.

As shown in Fig. 6a, the intensity of the PL emission of the
GO component in the GO/P3HT composite decreased upon
exposure to increasing concentrations of aniline,21 whereas the
intensity of the PL emission of the P3HT component remained
relatively constant. Moreover, as shown in Fig. 6b, the ratio of
the PL intensity of the P3HT component to the PL intensity of
Fig. 5 TEM images of the GO/P3HT composite: (a) large-sized sheets,
and (b) small-sized particles.

This journal is © The Royal Society of Chemistry 2014
the GO component (IP/IG) was found to be linearly correlated
with the concentration of aniline. Different results were
obtained when nitrobenzene was used as the analyte.21 As
shown in Fig. 6c, the PL emission of GO as well as the P3HT
components were quenched upon exposure to nitrobenzene
and, although linear, the relationship between IP/IG and
concentration of nitrobenzene changed at high concentrations
(Fig. 6d).

To explore the aforementioned PL responses in more detail,
a series of control experiments were performed. Aniline was
found to effectively quench the PL emission of the GO/HA
composite but not that of P3HT (Fig. S7†), which indicated that
aniline may be selectively interacting with GO. Thus, the GO
component served as the active centre to detect aniline in the
GO/P3HT composite whereas the P3HT component functioned
as an internal PL emission standard. In contrast, nitrobenzene
quenched the PL emission of the GO/HA composite as well as
pure P3HT (Fig. S8†). This result suggested to us that there were
two types of active centres in the GO/P3HT composite for
detecting nitrobenzene. As such, the inection point in the plot
of IP/IG as function of the concentration of nitrobenzene may
reect the relative sensitivities of these two centres (Fig. S8b†).22

Regardless, graing longer chains of P3HT to the GO enhanced
the sensitivity of the material and enabled a rapid, quantitative
detection of aniline as well as nitrobenzene. Finally, since the
solid lm of the GO/P3HT composite also displayed dual-uo-
rescence features, as revealed via confocal microscopy
(Fig. S6†), the solid lms could be used for vapour detection of
amine-based pollutants.
Conclusions

In summary, a dual-uorescent GO/P3HT composite was
synthesized by graing P3HT chains to the surfaces of GO. The
GO/P3HT composite showed well-resolved PL emissions at 421
Chem. Sci., 2014, 5, 3130–3134 | 3133
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and 578 nm, which were attributed to the GO and P3HT
components, respectively. Moreover, the intensity of the emis-
sions were successfully tuned by varying the excitation wave-
length. Capitalizing on these properties, we demonstrated, for
the rst time, that GO based materials may be used to detect
organic substrates in a ratiometric manner. Considering the
broad number of methods available to modify the structures
and properties of GO, we expect that the methodology described
herein will be adapted and used to realize new sensors and
bestow other carbon materials with useful uorescence prop-
erties and functions.
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