13 research outputs found

    Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    Get PDF
    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study

    Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders

    Get PDF
    Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions

    Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders.

    Get PDF
    Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions

    Howellanthus dalesianus , Recognition of a New Genus and Species in Tribe Phacelieae (Boraginaceae)

    No full text
    Volume: 57Start Page: 268End Page: 27

    Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    No full text
    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study

    Familial classification of the boraginales

    Get PDF
    The Boraginales are now universally accepted as monophyletic and firmly placed in Lamiidae. However, a consensus about familial classification has remained elusive, with some advocating recognition of a single, widely variable family, and others proposing recognition of several distinct families. A consensus classification is proposed here, based on recent molecular phylogenetic studies, morphological characters, and taking nomenclatural stability into consideration. We suggest the recognition of eleven, morphologically well-defined and clearly monophyletic families, namely the Boraginaceae s.str., Codonaceae, Coldeniaceae fam. nov., Cordiaceae, Ehretiaceae, Heliotropiaceae, Hoplestigmataceae, Hydrophyllaceae, Lennoaceae, Namaceae, and Wellstediaceae. Descriptions, synonomy, a taxonomic key, and a list of genera for these eleven families are provided, including the new family Coldeniaceae (monogeneric) and Namaceae (segregated from Hydrophyllaceae and comprising Nama, Eriodictyon, Turricula, and Wigandia), the latter necessitating a revised circumscription of a more morphologically coherent Hydrophyllaceae

    Law, the Digital and Time: The Legal Emblems of Doctor Who

    No full text
    This article is about time. It is about time, or more precisely, about the absence of time in law’s digital future. It is also about time travelling and the seemingly ever-popular BBC science fiction television series Doctor Who. Further, it is about law’s timefullness; about law’s pictorial past and the ‘visual baroque’ of its chronological fused future. Ultimately, it is about a time paradox of seeing time run to a time when time runs ‘No More!’ This ‘timey-wimey’ article is in three parts. The first part looks to a hazy remembered past of the legal emblem tradition as presented in Peter Goodrich’s Legal Emblems and the Art of Law to learn visual literacy and also to glimpse the essential elements of modern legality with authority, decision and violence. The second part maps how these images and icons of modern legality are manifest in the Doctor Who fiftieth year anniversary special ‘The Day of the Doctor.’ The third stage looks beyond these first order meanings to understand the chronological chaos of ‘The Day of the Doctor.’ The technicity of the image as a portal through time and space that the narrative revolves around charts the implications for the digital end of time for law.Arts, Education & Law Group, School of LawFull Tex

    Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders

    No full text
    An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders
    corecore