213 research outputs found

    Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study

    Get PDF
    Objective To determine if circulating concentrations of vitamin D are causally associated with risk of cancer.Design Mendelian randomisation study.Setting Large genetic epidemiology networks (the Genetic Associations and Mechanisms in Oncology (GAME-ON), the Genetic and Epidemiology of Colorectal Cancer Consortium (GECCO), and the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortiums, and the MR-Base platform).Participants 70 563 cases of cancer (22 898 prostate cancer, 15 748 breast cancer, 12 537 lung cancer, 11 488 colorectal cancer, 4369 ovarian cancer, 1896 pancreatic cancer, and 1627 neuroblastoma) and 84 418 controls.Exposures Four single nucleotide polymorphisms (rs2282679, rs10741657, rs12785878 and rs6013897) associated with vitamin D were used to define a multi-polymorphism score for circulating 25-hydroxyvitamin D (25(OH)D) concentrations.Main outcomes measures The primary outcomes were the risk of incident colorectal, breast, prostate, ovarian, lung, and pancreatic cancer and neuroblastoma, which was evaluated with an inverse variance weighted average of the associations with specific polymorphisms and a likelihood based approach. Secondary outcomes based on cancer subtypes by sex, anatomic location, stage, and histology were also examined.Results There was little evidence that the multi-polymorphism score of 25(OH)D was associated with risk of any of the seven cancers or their subtypes. Specifically, the odds ratios per 25 nmol/L increase in genetically determined 25(OH)D concentrations were 0.92 (95% confidence interval 0.76 to 1.10) for colorectal cancer, 1.05 (0.89 to 1.24) for breast cancer, 0.89 (0.77 to 1.02) for prostate cancer, and 1.03 (0.87 to 1.23) for lung cancer. The results were consistent with the two different analytical approaches, and the study was powered to detect relative effect sizes of moderate magnitude (for example, 1.20-1.50 per 25 nmol/L decrease in 25(OH)D for most primary cancer outcomes. The Mendelian randomisation assumptions did not seem to be violated.Conclusions There is little evidence for a linear causal association between circulating vitamin D concentration and risk of various types of cancer, though the existence of causal clinically relevant effects of low magnitude cannot be ruled out. These results, in combination with previous literature, provide evidence that population-wide screening for vitamin D deficiency and subsequent widespread vitamin D supplementation should not currently be recommended as a strategy for primary cancer prevention

    Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study

    Get PDF
    Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol

    Mendelian randomization of circulating polyunsaturated fatty acids and colorectal cancer risk

    Get PDF
    Background: Results from epidemiologic studies examining polyunsaturated fatty acids (PUFA) and colorectal cancer risk are inconsistent. Mendelian randomization may strengthen causal inference from observational studies. Given their shared metabolic pathway, examining the combined effects of aspirin/NSAID use with PUFAs could help elucidate an association between PUFAs and colorectal cancer risk. Methods: Information was leveraged from genome-wide association studies (GWAS) regarding PUFA-associated SNPs to create weighted genetic scores (wGS) representing genetically predicted circulating blood PUFAs for 11,016 non-Hispanic white colorectal cancer cases and 13,732 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Associations per SD increase in the wGS were estimated using unconditional logistic regression. Interactions between PUFA wGSs and aspirin/NSAID use on colorectal cancer risk were also examined. Results: Modest colorectal cancer risk reductions were observed per SD increase in circulating linoleic acid [ORLA = 0.96; 95% confidence interval (CI) = 0.93-0.98; P = 5.2 × 10-4] and α-linolenic acid (ORALA = 0.95; 95% CI = 0.92-0.97; P = 5.4 × 10-5), whereas modest increased risks were observed for arachidonic (ORAA = 1.06; 95% CI = 1.03-1.08; P = 3.3 × 10-5), eicosapentaenoic (OREPA = 1.04; 95% CI = 1.01-1.07; P = 2.5 × 10-3), and docosapentaenoic acids (ORDPA = 1.03; 95% CI = 1.01-1.06; P = 1.2 × 10-2). Each of these effects was stronger among aspirin/NSAID nonusers in the stratified analyses. Conclusions: Our study suggests that higher circulating shorter-chain PUFAs (i.e., LA and ALA) were associated with reduced colorectal cancer risk, whereas longer-chain PUFAs (i.e., AA, EPA, and DPA) were associated with an increased colorectal cancer risk. Impact: The interaction of PUFAs with aspirin/NSAID use indicates a shared colorectal cancer inflammatory pathway. Future research should continue to improve PUFA genetic instruments to elucidate the independent effects of PUFAs on colorectal cancer

    Mendelian randomization analysis of C-reactive protein on colorectal cancer risk

    Get PDF
    Background: Chronic inflammation is a risk factor for colorectal cancer (CRC). Circulating C-reactive protein (CRP) is also moderately associated with CRC risk. However, observational studies are susceptible to unmeasured confounding or reverse causality. Using genetic risk variants as instrumental variables, we investigated the causal relationship between genetically elevated CRP concentration and CRC risk, using a Mendelian randomization approach. Methods: Individual-level data from 30 480 CRC cases and 22 844 controls from 33 participating studies in three international consortia were used: the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry (CCFR). As instrumental variables, we included 19 single nucleotide polymorphisms (SNPs) previously associated with CRP concentration. The SNP-CRC associations were estimated using a logistic regression model adjusted for age, sex, principal components and genotyping phases. An inverse-variance weighted method was applied to estimate the causal effect of CRP on CRC risk. Results: Among the 19 CRP-associated SNPs, rs1260326 and rs6734238 were significantly associated with CRC risk (P = 7.5 × 10-4, and P = 0.003, respectively). A genetically predicted one-unit increase in the log-transformed CRP concentrations (mg/l) was not associated with increased risk of CRC [odds ratio (OR) = 1.04; 95% confidence interval (CI): 0.97, 1.12; P = 0.256). No evidence of association was observed in subgroup analyses stratified by other risk factors. Conclusions: In spite of adequate statistical power to detect moderate association, we found genetically elevated CRP concentration was not associated with increased risk of CRC among individuals of European ancestry. Our findings suggested that circulating CRP is unlikely to be a causal factor in CRC development

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014

    Telomere structure and maintenance gene variants and risk of five cancer types.

    Get PDF
    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10-5 ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk.Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 – the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/ijc.3028
    corecore