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Abstract 105 

Background: Substantial evidence supports an association between use of menopausal 106 

hormone therapy and increased colorectal cancer (CRC) risk, indicating a role of exogenous 107 

sex hormones in CRC development. However, findings on endogenous estrogen exposure 108 

and CRC are inconsistent.  109 

Methods: We used a Mendelian randomization approach to test for a causal effect of age at 110 

menarche and age at menopause as surrogates for endogenous estrogen exposure on CRC 111 

risk. Weighted genetic risk scores based on 358 single nucleotide polymorphisms associated 112 

with age at menarche and 51 single nucleotide polymorphisms associated with age at 113 

menopause were used to estimate the association with CRC risk using logistic regression in 114 

12 944 women diagnosed with CRC and 10 741 women without CRC from three consortia. 115 

Sensitivity analyses were conducted to address pleiotropy and possible confounding by body 116 

mass index.  117 

Results: Genetic risk scores for age at menarche (odds ratio per year 0.98, 95% confidence 118 

interval: 0.95-1.02) and age at menopause (odds ratio 0.98, 95% confidence interval: 0.94-119 

1.01) were not significantly associated with CRC risk. The sensitivity analyses yielded 120 

similar results.  121 

Conclusion: Our study does not support a causal relationship between genetic risk scores for 122 

age at menarche and age at menopause and CRC risk. 123 

 124 

Keywords: BMI, egger regression, endogenous estrogen, hormonal factors, menstrual, 125 

polygenic risk score, reproductive factor, sex hormone, weighted median 126 
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BACKGROUND 127 

Colorectal cancer (CRC) is the third most common cancer worldwide and incidence rates are 128 

higher in men than in women.1 The sex-specific difference might be partly attributed to 129 

differential exposure to sex-hormones, especially estrogen.2 This hypothesis is partially 130 

supported by epidemiologic studies as well as a recent meta-analysis out of four randomized 131 

controlled trials, eight cohort and eight case-control studies, which have shown that use of 132 

exogenous sex hormones in the form of combined estrogen-progestogen menopausal 133 

hormone therapy (MHT) is inversely associated with the risk of CRC.3, 4 134 

Epidemiologic studies examining reproductive factors such as age at menarche and age at 135 

menopause with CRC risk have reported inconsistent results.5-7 A meta-analysis 136 

summarizing evidence based on 22 studies published by Li et al. did not find a significant 137 

association between age at menarche and CRC risk.8 In a large prospective cohort of the NIH 138 

American Association of Retired Persons (AARP) Diet and Health Study with more than 139 

214,000 postmenopausal women, an inverse association between age at menarche and CRC 140 

risk was observed for women without a history of MHT use, whereas increasing age at 141 

menopause was associated with higher CRC risk.9 It is possible that the inconsistency in 142 

results is due to recall bias or to improper adjustment for confounders, which are inherent 143 

limitations of observational studies. The Mendelian randomization (MR) approach10 uses 144 

genetic variants as instrumental variables to test for the causal effect of an exposure risk 145 

factor on an outcome. Since the genetic variants in offspring are randomly distributed at 146 

conception independent of environmental factors given parental genotypes, confounding and 147 

reverse causation are less likely to occur in MR analyses. For genetic variants to function as 148 

valid instrumental variables in MR analyses, three assumptions have to be met: 1) the genetic 149 

variants have to be associated with the exposure risk factor; 2) the variants are not associated 150 

with any confounding variables of the exposure-outcome association; and 3) the variants are 151 

unrelated to the outcome except through the risk factor of interest.11, 12 Using variants 152 

associated with age at menarche and age at menopause instead of self-reported measure of 153 
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the risk factors themselves, this approach can help to avoid issues of confounding, recall bias 154 

and reverse causation. Evidence from MHT use suggests that more exposure to estrogen 155 

reduces risk of CRC.3, 4, 13 Estrogen exerts its effects in colon cells predominantly through the 156 

nuclear receptor estrogen-receptor β (ERβ),14, 15 which has mainly anti-proliferative effects16 157 

and its expression is inversely related to cancer stage, tumor extent and mortality.17, 18 Longer 158 

use of MHT appears to be associated with high ERβ expression in tumors.19 If similar 159 

mechanisms hold then longer endogenous estrogen exposure (through earlier age at 160 

menarche and/or later age at menopause) would reduce CRC risk as well. To test this 161 

hypothesis, we conducted a MR analysis using summary data for single nucleotide 162 

polymorphisms (SNPs) known to be associated with age at menarche and age at menopause 163 

from prior studies as well as using individual level data of three consortia. 164 

MATERIALS AND METHODS 165 

Study population. Epidemiological and genetic data were derived from 26 studies 166 

participating in three large consortia of CRC, the Genetics and Epidemiology of Colorectal 167 

Cancer Consortium (GECCO)20 (5 386 cases and 5 696 controls), the Colon Cancer Family 168 

Registry (CCFR)21 (1 678 cases and 1 188 controls) and the Colorectal Cancer 169 

Transdisciplinary (CORECT) Consortium22 (5 880 cases and 3 857 controls) (see 170 

Supplementary Tables 1 and 2). Different centers of CCFR participated as individual studies 171 

in GECCO and/or CORECT, and therefore were analyzed as such. Any participant overlap 172 

between the three consortia was excluded. In total, 12 944 female colorectal cancer cases and 173 

10 741 female controls, both of European ancestry were included. All participants provided 174 

written, informed consent and studies were approved by their respective institutional review 175 

boards. Women with incident invasive colorectal adenocarcinoma (International 176 

Classification of Disease Code, 9th revision (ICD-9), codes 153-154) were included as cases. 177 

Data on demographic factors and lifestyle were collected using in-person interviews or self-178 

completed questionnaires. Data harmonization was done centrally as previously described.23 179 
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Self-reported data for age at menarche and age at menopause have not been harmonized and 180 

therefore could not be used.  181 

Genotype data and imputation. Genotype information was available for all included 182 

studies. Details on genotyping, quality assurance and imputation are included in the 183 

Supplementary Information. In short, SNPs were excluded based on call rate (<98% 184 

GECCO; <95% in CORECT), Hardy-Weinberg equilibrium in controls (P<1x10-4) or low 185 

minor allele frequency (≤1%). Participants received a value of 0, 1, or 2 for carrying 0 (wild-186 

type homozygous), 1 (heterozygous) or 2 (homozygous for the risk allele) alleles associated 187 

with higher age at menarche/age at menopause for each SNP. For imputed SNPs, participants 188 

were assigned continuous values between 0 and 2.  189 

Calculation of genetic risk scores. Two recent genome-wide association studies 190 

conducted by the REPROGEN consortium (Reproductive Genetics Consortium) involving 191 

up to ~370 000 women for the study on age at menarche and up to 69 360 women for the 192 

study on age at menopause identified 389 genetic variants associated with age at menarche24 193 

and 54 SNPs associated with age at natural menopause25 at a genome-wide significance level 194 

(i.e., P<5x10-8). Of the reported 389 genetic variants for age at menarche, 12 variants on sex 195 

chromosomes (which were not available in our datasets) were excluded. For further 42 196 

missing variants, we used proxy SNPs in strong linkage disequilibrium (R²>0.8, median 197 

R²=0.985, R² range: 0.83-1.00) with effect alleles harmonized to reflect increase in age at 198 

menarche. Seven variants were excluded because no proxy was found. We checked for 199 

correlations between individual SNPs and excluded 12 correlated SNPs (R²>0.01) (always 200 

the SNP with higher P-value for association with age at menarche was dropped). So data 201 

were available for 358 SNPs for this analysis (mean imputation quality score=0.97) 202 

(Supplementary Table 5). For age at menopause, three correlated SNPs (R²>0.01) were 203 

excluded. All remaining 51 SNPs for age at menopause were available in the datasets (mean 204 

imputation quality score=0.98) (Supplementary Table 6). The genotype data described were 205 
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used to construct genetic risk scores (GRS) as instrumental variables for age at menarche and 206 

age at menopause, respectively.  207 

The GRS for the kth women is calculated by the sum of the number of risk increasing alleles 208 

carried (G) (imputed allele doses) for each SNP weighted by the reported beta-coefficient (β) 209 

for association with age at menarche and age at menopause.24, 25 210 

Age at menarche   211 

GRS݇ = ෍ ݊ߚ 358݊݇ܩ
݊=1  

 212 

Age at menopause   213 

GRS݇ = ෍ ݊ߚ 51݊݇ܩ
݊=1  

 214 

As risk scores themselves do not have meaningful units, we scaled the risk scores in terms of 215 

age in years. In this way resulting odds ratios (OR) can be interpreted as the relative change 216 

in CRC risk per year older age at menarche/age at menopause. Scaling was done by dividing 217 

the GRS by regression coefficients of a linear regression of GRS on self-reported age at 218 

menarche (beta= 0.57) or age at menopause (beta=0.98). These regression coefficients were 219 

obtained using the DACHS (Darmkrebs: Chancen der Verhütung durch Screening) study 220 

(853 control women) and the WHI (Womens’ Health Initiative) study (1 492 control women) 221 

for which self-reported data on age at menarche were available and regression coefficients of 222 

the two studies were combined using meta-analysis.  223 

An additional GRS as a surrogate for total lifetime exposure to endogenous estrogen was 224 

calculated as the sum of the scaled risk scores for age at menarche and age at menopause.  225 GRS݁݉݅ݐ ݀݋݅ݎ݁݌  = GRSܽ݃݁ ݐܽ  ܿݎܽ݊݁݉  ℎ݁ + GRSܽ݃݁ ݐܽ ݁ݏݑܽ݌݋݊݁݉  
 226 



9 
 

For this analysis, risk scores for age at menarche were calculated as the sum of the number 227 

of alleles associated with decreasing age at menarche and the number of alleles associated 228 

with increasing age at menopause. So the GRS for time period of estrogen exposure reflects 229 

higher risk for longer exposure to endogenous estrogen. For this score, four SNPs 230 

(rs3136269, rs11031040, rs537244, rs4303811) were excluded due to high linkage 231 

disequilibrium (R²>0.01) between age at menarche and age at menopause SNPs. 232 

 233 

Statistical analysis.  234 

Validating MR assumptions 235 

The first assumption of MR regarding instrumental variable strength (i.e. association 236 

between the genetic variants and the exposure risk factor) was verified by calculating the F-237 

statistic out of F= (R²(n-K-1))/((1-R²)K)), where R² refers to the variance explained by the 238 

instrumental variable,24, 25 K indicates the number of instrumental variables and n stands for 239 

the sample size.26 An F-statistic >10 suggests that the genetic instrument is sufficiently 240 

strong.27 To evaluate the second assumption of MR (i.e. no association between genetic 241 

variants and potential confounders), we tested associations between GRS for age at 242 

menarche/age at menopause and the following risk factors for CRC: smoking status 243 

(ever/never), family history of CRC, education/educational level, ever aspirin/NSAID use (at 244 

least once per month for more than one year), body mass index (BMI) (continuous), 245 

menopausal hormone therapy (estrogen/progestin combined and estrogen alone), using linear 246 

regression for continuous variables and logistic/multinomial logistic regression for 247 

categorical variables in a subset of the studies with available data (n=6 285 controls). To 248 

address the third assumption of MR i.e. to assess the presence of pleiotropy, we applied the 249 

MR-Egger method.28 MR-Egger relies on the InSIDE assumption (Instrument Strength 250 

Independent of Direct Effect), which is the assumption that the pleiotropic effects of the 251 

genetic variants are not correlated with the effects of genetic variants on the risk factors. 252 

MR-Egger uses an inverse-variance weighted estimator and by plotting the SNP`s effect on 253 
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the exposure against its effect on the outcome, the intercept term of MR-Egger provides a 254 

test for directional pleiotropy, i.e. the average effect of pleiotropy is non-zero, across all 255 

genetic variants used. If the average pleiotropic effect of all variants is zero and the InSide 256 

assumption is satisfied, pleiotropy is “balanced” and will not be detected. If the intercept 257 

differs from zero, it suggests horizontal pleiotropy, which means that some genetic variants 258 

affect the outcome through a pathway different from the exposure of interest. For visual 259 

inspection of pleiotropy, we used funnel plots of each SNPs ratio estimate against its 260 

precision (1/standard error of the ratio estimate).29, 30 Any deviation from symmetry would 261 

suggest pleiotropy. 262 

Estimation of Causal Effect 263 

GRS based analyses 264 

We examined the association between GRS and CRC risk using logistic regression models 265 

adjusted for study, age as well as principal components (PCs) of genetic ancestry (three PCs 266 

were used for GECCO and 10 PCs were used for CORECT), to account for potential 267 

population stratification. Summary results for GECCO and CORECT were derived using 268 

fixed-effects meta-analysis assuming that the included studies share a common effect size. 269 

As there are indications for differential associations of age at menarche with CRC risk 270 

according to menopausal hormone use,9, 31 stratified analyses by menopausal hormone 271 

therapy were performed (only in GECCO where harmonized data were available). Additional 272 

stratified analyses were performed according to menopausal status (for age at menarche), 273 

combined menopausal estrogen or progesterone therapy, estrogen therapy alone, and BMI 274 

categories in kg/m² (BMI<18.5: underweight, 18.5–24.9: normal weight, 25-30: overweight, 275 

>30: obese) (only for age at menopause). Due to reported differences in risk between colon 276 

and rectal cancer associated with hormone use,32, 33 we also conducted site-specific analyses 277 

for 4 037 female colon cancer cases and 1 184 rectal cancer cases in GECCO. Power 278 

calculations were conducted to estimate the magnitude of effects detectable with our study 279 

size assuming 5% alpha level and an R² of 0.069 for age at menarche and R² of 0.057 for age 280 
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at menopause, which corresponds to the variance in age at menarche/age at menopause 281 

explained by the SNPs used for this analyses.34 282 

It is known that BMI in childhood is strongly associated with age at menarche35 and that 283 

some SNPs associated with age at menarche could also have pleiotropic effects e.g. are 284 

related to BMI as well.24 To address this issue and thereby also account for violations of the 285 

third MR assumption, we conducted further BMI-specific sensitivity analyses. We adjusted 286 

for BMI in the logistic regression analysis using a weighted GRS for BMI comprising 77 287 

SNPs previously reported to be associated with BMI at a genome-wide significance level in 288 

European subjects.36 For the second sensitivity analysis, we identified age at menarche SNPs 289 

showing pleiotropy by testing the association of these SNPs with BMI in a subset of our 290 

sample (n=5 832 cases/6 285 controls) and found 29 SNPs to be associated with BMI at 291 

nominal significance (P value<0.05). Two further SNPs overlapped with reported BMI-292 

SNPs36 and eleven more SNPs were in high linkage disequilibrium (R²>0.1) with BMI SNPs. 293 

A restricted GRS for age at menarche excluding the 42 BMI-associated SNPs (n=316 SNPs) 294 

was constructed and then assessed for association with CRC risk. For the analysis of lifetime 295 

estrogen-exposure we also generated a restricted risk score excluding the same 42 BMI-296 

associated SNPs.  297 

Two-sample MR analyses 298 

We performed two-sample MR analyses as sensitivity analyses using published summary 299 

statistics for SNP-exposure associations (age at menarche24/age at menopause25), SNP 300 

outcome associations were estimated in GECCO/CORECT (Supplementary Tables 8 and 9 301 

for age at menarche/menopause-SNPs respectively). We applied the weighted median 302 

estimator approach, which is robust against violations due to pleiotropic SNPs even when up 303 

to 50% of the genetic instruments are invalid.37 For this approach, we used SNP-exposure 304 

and SNP-outcome associations to build ratio estimates for each SNP. These estimates were 305 

ordered and weighted by the inverse of their variance. Bootstrapped standard errors were 306 

calculated and used for construction of 95% confidence intervals (CI). Furthermore, we 307 
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assessed the slope of MR-Egger regression (see section on validation of MR assumptions) 308 

which yields a pleiotropy-adjusted estimate of the true causal effect.28  309 

All analyses were conducted using R version 3.2.2 (R Foundation for Statistical Computing, 310 

Vienna, Austria). For supplementary figures, we used the R packages “Mendelian 311 

Randomization”38 and “ggplot2”. 312 

RESULTS 313 

The assessment of the MR assumptions indicated that our instrumental variables for age at 314 

menarche and for age at menopause were both strong instruments (F-statistic for age at 315 

menarche=1 755, R²=0.06924; F-statistic for age at menopause=1 431, R²=0.05725. Secondly, 316 

we did not find significant associations between the GRS for age at menarche and CRC risk 317 

factors, including smoking, family history of cancer, education, aspirin/NSAID use, 318 

estrogen/progestin therapy, estrogen alone therapy, with the exception of BMI, which 319 

showed a significant association (Supplementary Table 3). Similarly, there was no 320 

association of the GRS for age at menopause with any of the tested risk factors 321 

(Supplementary Table 3). Table 1 shows the results of the MR analyses for age at menarche, 322 

age at menopause and lifetime estrogen exposure with CRC risk. Yearly increment in GRS 323 

for age at menarche was associated with CRC risk with an OR of 0.98 (95% CI: 0.95-1.02). 324 

Sensitivity analyses adjusting for BMI using a GRS yielded similar results for age at 325 

menarche (OR 0.99 per year, 95% CI: 0.95-1.02). Further sensitivity analysis using restricted 326 

risk scores for age at menarche (by excluding 42 BMI-associated SNPs) showed similar 327 

effect sizes for the association between age at menarche and CRC risk (OR 0.99 per year, 328 

95% CI: 0.95-1.03). We also did not find evidence to support a causal association with risk 329 

of CRC for age at menopause (OR 0.98 per year, 95% CI: 0.94-1.01) or for lifetime estrogen 330 

exposure (OR 0.99 per year, 95% CI: 0.97-1.02) using GRS-based analyses.  331 

Results of the weighted median estimator approach also did not indicate causal association 332 

between age at menarche (OR per year 1.00, 95% CI: 0.90-1.11), age at menopause (OR per 333 
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year 1.00, 95% CI: 0.95-1.05) or lifetime estrogen-exposure (OR per year 1.00, 95% CI: 334 

0.95-1.05) with CRC risk. 335 

The pleiotropy adjusted MR estimate (OR) derived from the slope of Egger regression was 336 

0.99 (95% CI: 0.83-1.17) for age at menarche, 1.02 (95% CI: 0.94-1.10) for age at 337 

menopause and 0.97 (95% CI: 0.91-1.01) for lifetime estrogen-exposure (details of results 338 

per GECCO and CORECT consortium in Supplementary Table 7). The intercept term from 339 

MR-Egger regression was centered at the origin for age at menarche (intercept term -0.0008, 340 

95% CI: -0.007-0.005, P value 0.80) and age at menopause (intercept term -0.009, 95% CI: -341 

0.023-0.006, P value 0.23) suggesting absence of strong directional pleiotropy 342 

(Supplementary Figure 1 and 2). Also the funnel plots for age at menarche and age at 343 

menopause appear to be generally symmetrical and therefore do not suggest presence of 344 

pleiotropy (Supplementary Figure 3 and 4). Table 2 shows stratified analyses for the 345 

association of GRS for age at menarche and CRC risk by menopausal status, combined 346 

estrogen/progesterone therapy and estrogen alone therapy as well as cancer site based on 347 

GECCO data. None of these factors modified substantially the association between age at 348 

menarche and CRC risk. The site specific analysis showed no evidence for a difference in 349 

association between colon cancer (OR 0.97 per year, 95% CI: 0.91-1.02) and rectal cancer 350 

(OR 1.04 per year, 95% CI: 0.95-1.14). The analyses for age at menopause stratified by 351 

combined estrogen/progesterone therapy, estrogen alone therapy, BMI and cancer site did not 352 

yield evidence for effect heterogeneity (Table 3). Power calculation shows that our study had 353 

> 80 % power to detect an OR of 0.85 per standard deviation change in exposure variable 354 

(1.5 years for age at menarche, 4.8 years for age at menopause) but only around 50% power 355 

for an OR of 0.90 (Supplementary Table 4). 356 

DISCUSSION 357 

In this large MR study we aimed to clarify the inconsistent findings from observational 358 

studies regarding the association of age at menarche and age at menopause with CRC risk 359 

and thereby the role of endogenous estrogen exposure. We investigated the association of 360 
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GRS for age at menarche and age at menopause as surrogates for endogenous estrogen 361 

exposure on CRC risk. Our results do not support an association between GRS for age at 362 

menarche and age at menopause and CRC risk, which under MR assumptions can be 363 

interpreted as absence of a causal effect.  364 

In line with the findings of our study, several prospective studies and one meta-analysis 365 

reported no association6, 8, 39 between self-reported age at menarche and CRC risk, although 366 

some studies found an inverse association.5, 9 Two more recent prospective studies reported 367 

inverse associations with CRC risk for age at menarche only among never users of any MHT. 368 

In never users of hormone therapy, Zervoudakis et al. reported a hazard ratio of 0.73 (95% 369 

CI: 0.57-0.94) for age at menarche (>15 vs. 11-12 years) in association with risk of CRC9 370 

and Murphy et al. found a hazard ratio of 0.72 (95% CI: 0.54-0.96) for age at menarche (>15 371 

vs. 11-12 years).31 We therefore assessed the association of GRS for age at menarche with 372 

CRC risk stratified by ever/never use of MHT, separately for combined estrogen-373 

progesterone therapy and for estrogen monotherapy. No difference in the association 374 

according to either combined estrogen-progesterone therapy or estrogen-alone therapy was 375 

found.  376 

Higher BMI in childhood is associated with earlier age at menarche24, 35 and also with a 377 

higher risk for CRC.40 Therefore we conducted BMI-specific sensitivity analyses to account 378 

for violations of the MR assumptions by confounding and pleiotropy. Due to a strong 379 

association between childhood/adolescent BMI and adult BMI41 and also a high concordance 380 

between adolescent and adult BMI-SNPs,42 we accounted for adult BMI in sensitivity 381 

analyses. The effect sizes observed in the sensitivity analysis (by excluding BMI-associated 382 

SNPs and by adjustment using a GRS for BMI) were slightly smaller compared to results of 383 

the main analysis, which suggests that some of the effect was confounded by BMI. Our 384 

restricted risk-score might not be totally BMI-unrelated, considering that Day et al.24 found 385 

age at menarche variants that appear unrelated to BMI at a nominal level in their sample to 386 

be still BMI associated collectively (P=4.2x10-9). Because of this strong interrelationship 387 

between age at menarche and BMI it is difficult to separate the SNPs into BMI-related and 388 
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BMI-unrelated variants. So our adjustment of the analysis by GRS-BMI might more 389 

effectively control for BMI. Thus, any observed inverse relationship between age at 390 

menarche and CRC risk in previous observational studies could have been due to inadequate 391 

control of confounding by higher BMI in childhood.  392 

For age at menopause, results of observational studies on the association with CRC risk have 393 

also been inconclusive. The large NIH-AARP study observed a statistically significant 394 

elevated risk for higher age at menopause in postmenopausal women (≥55 vs < 40; HR 1.50, 395 

95% CI: 1.23, 1.83),9 whereas most other studies reported null associations.6, 31, 39 396 

Corresponding to the lack of association with age at menarche and age at menopause, the 397 

GRS for the reproductive period as indicator for the lifetime estrogen exposure was also not 398 

significantly associated to CRC risk. Additional adjustment of that analysis by education, 399 

family history of CRC, ever regular aspirin use, MHT usage, BMI and smoking did not 400 

substantially change the results (Supplementary Table 10). This is compatible with the 401 

observation of no association between the reproductive period (≥ 36 years vs. ≤ 30 years) 402 

and CRC risk in a prospective observational study conducted in Japan43. The GRS for 403 

lifetime for endogenous estrogen exposure, which we constructed, does not account for other 404 

factors like parity or breast feeding, which influence overall estrogen exposure, however, 405 

these factors have not been associated with CRC risk. 406 

Results of prospective studies that investigated the association between serum levels of 407 

endogenous estrogens and CRC risk have also been inconsistent. One study reported a 408 

positive association between circulating estradiol and CRC risk,44 another study observed an 409 

inverse relationship45 while most other studies found no associations.46-48 There are reports 410 

that earlier age at menarche is associated with higher estrogen levels.49, 50 So estrogen levels 411 

could also be a possible link between age at menarche and CRC risk. Due to the inconsistent 412 

results of these reports, further studies are needed to clarify these associations.  413 

On the other hand, observational studies reported that exogenous estrogen exposure by MHT 414 

mainly in the form of combined estrogen-progestogen was associated with a reduced risk for 415 

CRC.13, 51 The Womens`s Health Initiative Clinical Trial (WHI-CT) reported no effect of 416 
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estrogen-alone therapy,52, 53 and a significant risk reduction for the association of estrogen 417 

plus progestin vs. placebo and CRC risk,33 which was suggested to have resulted from 418 

diagnostic delay instead of true risk reduction54. However, a recent meta-analysis which 419 

summarized results of four clinical trials including WHI-CT and 16 observational studies 420 

concluded that there is consistent evidence to support a protective effect of MHT on CRC 421 

risk.4 422 

Thus, it appears that exogenous and endogenous estrogens, which also vary in absolute 423 

amount of estrogen, may play different roles in the development of CRC, presumably by 424 

different mechanisms, which are not well understood. Estrogen acts in colon cells 425 

predominantly through ERβ,14, 15 which exerts proapoptotic and anti-proliferative effects in 426 

the colon16 and its expression is reduced in tumor tissue.17, 18 According to an in vivo study, 427 

estrogen treatment was associated with an increase in expression of ERβ in colon tissue,55 428 

supporting a mechanism by which MHT may affect CRC risk. There is also some evidence 429 

that the protective effect of MHT on CRC risk may vary by the expression status of ERβ. 430 

Two studies found that the magnitude of risk reduction by MHT was different between 431 

colorectal tumors with higher and with lower expression of ERβ.56, 57 It is possible that the 432 

effect of endogenous estrogens on CRC risk may be modulated by ERβ expression as well. 433 

Therefore, larger studies with data on expression of ERβ in colon tissue are warranted to 434 

assess whether the association of age at menarche/age at menopause and CRC risk differs by 435 

ERβ expression status. 436 

In this MR study, we aimed to use proxies for start and endpoint of endogenous estrogen 437 

exposure in women, specifically age at menarche/age at menopause, which themselves are 438 

complex traits influenced by many variants with only small effects on the trait. Although we 439 

did not see large pleiotropic effects using Egger regression, there might have been residual 440 

pleiotropy, which is difficult to exclude. Previous studies of age at menarche performed LD 441 

score regression using 123 SNPs associated with age at menarche and found, amongst others, 442 

genetic correlations with BMI, adult height or Type 2 diabetes. Residual pleiotropy related to 443 
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adult height or Type 2 diabetes, which have been reported to be associated with higher risk 444 

for CRC as well, cannot be fully excluded.58 In addition, Day et al. reported genetic 445 

correlations for the 54 age at menopause SNPs with adult obesity and other growth-related 446 

traits. The top menopause-SNPs were also associated with fasting glucose and were enriched 447 

in DNA repair pathways, yielding further sources of residual pleiotropy.25 Residual 448 

pleiotropy is a general limitation of MR, especially when exploring complex traits. When 449 

considering the recently published hypothesis of an omnigenic model of complex traits, 450 

coined „network pleiotropy“, essentially any regulatory variant in a trait-relevant cell-type 451 

can have some effect on the trait.59 This is because specific cell-types have specific 452 

regulatory networks, where any single variant could affect trait relevant genes, „core genes“, 453 

mediated through the same regulatory networks. So also for GWAS findings, it is highly 454 

likely that some genetic variants exhibit horizontal pleiotropy.60 As the selected age at 455 

menarche/age at menopause SNPs might also contribute tiny effects on further traits through 456 

network-pleiotropy, we cannot fully rule out pleiotropy. These limitations should be kept in 457 

mind and methods to explore the impact of such effects should be developed. That said, our 458 

sensitivity analyses especially Egger regression, did not indicate large pleiotropic effects.  459 

The second assumption of MR is that the IV is not associated with confounding factors of 460 

the observational association between age at menarche/menopause and CRC risk. We were 461 

able to exclude most risk factors for CRC (smoking, family history of CRC, education, 462 

aspirin use, MHT) as confounding variables except for BMI, which was accounted for using 463 

several sensitivity analyses. In addition, substantial overlap between datasets used for 464 

estimating SNP-exposure and SNP-outcome associations would bias results in the direction 465 

of the observational estimate. There was some overlap between the studies (see 466 

Supplementary Information on participant overlap) but unlikely to have substantially 467 

influenced the results. 468 

Strengths of our study include the large sample size, the availability of centrally harmonized 469 

data and the robustness of the instrumental variables. Power calculations showed that our 470 

study has limited power to detect weak effects. Therefore, we cannot exclude a weak 471 
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association of CRC with age at menarche or age at menopause. In summary, in our large MR 472 

study, evidence is limited for causal associations between age at menarche/age at menopause 473 

and CRC risk.  474 
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Table 1: Association between age at menarche/age at menopause and CRC risk using MR analyses and sensitivity analyses

Cases/Controls OR 95% CI OR 95% CI OR 95% CI OR 95% CI OR 95% CI

12 944/10 741 0.98 0.95-1.02 0.99 0.95-1.02 0.99 0.95-1.03 0.99 0.83-1.17 1.00 0.90-1.11

12 944/10 741 0.98 0.94-1.01 NA NA NA NA 1.02 0.94-1.10 1.00 0.95-1.05

Abbreviations: BMI, body mass index; CCFR, colon cancer family registry; CI, confidence interval; CORECT, Colorectal Transdisciplinary study; GECCO, Genetics and Epidemiology of

Colorectal Cancer Consortium; GRS, genetic risk score; MR, Mendelian randomization; NA, not applicable;  OR, odds ratio per year, SNPs, single nucleotide polymorphisms; se, standard error.
a Logistic regression model adjusted for age, study and principal components of genetic ancestry;
b Meta-analyzed estimate of GECCO/CORECT datasets (CCFR centers participated in GECCO or CORECT and were analyzed as such);
c additionally adjusted for a GRS for BMI out of 77 reported SNPs for BMI 33;
d 42 BMI-associated SNPs were excluded from the age at menarche and time period of estrogen -exposure – risk scores;
e estimate derived from the slope of MR-Egger;
f estimates derived using summary statistics; se for calculation of CI obtained via bootstrapping.

2-sample MRf

0.97-1.02 0.99 0.97-1.010.99 0.97-1.02 0.99 0.95-1.05

MR-Eggerb,e Weighted Median 

Estimatorb

GRS-based analyses

Adjusted by GRS-

BMIa,c

Restricted risk 

scorea,dMR estimatea,b

Variable (per year)

Age at menarche

Age at menopause

Time period of 
hormone exposure

12 944/10 741 1.000.97 0.93-1.01



Table 2. Association of genetically predicted age at menarche with CRC risk according to subgroups, CCFR, GECCO Consortium

Subgroup N (cases/controls) ORa 95% CI P  value

All 5832/6285 0.97 0.92-1.02 0.20

   Premenopausal 545/621 0.95 0.80-1.12 0.54
   Postmenopausal 5263/5647 0.97 0.92-1.02 0.23

   No 3266/3490 0.96 0.90-1.03 0.24
   yes 593/807 0.98 0.85-1.14 0.82

   No 3120/3214 0.94 0.88-1.01 0.11
   yes 716/1088 1.04 0.91-1.19 0.55
Site
   Colon 4037/6285 0.97 0.91-1.02 0.26
   Rectum 1184/6285 1.04 0.95-1.14 0.36
Abbreviations: CCFR, colon cancer family registry; CI, confidence interval; GRS, genetic risk score; OR, odds ratio per year.
a all analyses adjusted for age, sex, study and principal components of genetic ancestry;
b P  value calculated using likelihood ratio tests comparing the model with and without interaction term;
c P  value for heterogeneity was obtained in case-only analysis of colon vs. rectal cancer.

Estrogen monotherapy

Menopausal status

Menopausal hormone therapy combined

0.25c

Heterogeneity P  valueb

0.69

0.17

0.94



Table 3. Association of genetically predicted age at menopause and CRC risk according to subgroups, CCFR, GECCO Consortium

N (cases/controls) ORa 95% CI P  value Heterogeneity P value b

All 5832/6285 0.99 0.95-1.03 0.56

   No 3266/3490 0.99 0.93-1.05 0.78 0.75
   Yes 593/807 0.96 0.85-1.10 0.58

   No 3120/3214 0.99 0.93-1.05 0.27 0.76
   Yes 716/1088 1.01 0.89-1.14 0.90
BMI
   Normal weight 2146/2665 1.00 0.93-1.07 0.97 0.50
   Overweight 1866/1918 0.99 0.91-1.07 0.77
   Obese 1284/1115 1.00 0.91-1.11 0.93
   Underweight 74/80 0.63 0.40-0.98 0.04
Site
   Colon 4037/6285 0.98 0.94-1.03 0.53 0.61c

   Rectum 1184/6285 0.98 0.91-1.06 0.65
Abbreviations: BMI, body mass index; CCFR, colon cancer family registry; CI, confidence interval; GRS, genetic risk score; OR, odds ratio per year. 
a all analyses adjusted for age, sex, study and principal components of genetic ancestry
b P  value calculated using likelihood ratio tests comparing the model with and without interaction term
c P  value for heterogeneity was obtained in case-only analysis of colon vs. rectal cancer

Combined estrogen-progesterone therapy 

Estrogen monotherapy
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