559 research outputs found

    The role of Surface Plasmon modes in the Casimir Effect

    Full text link
    In this paper we study the role of surface plasmon modes in the Casimir effect. First we write the Casimir energy as a sum over the modes of a real cavity. We may identify two sorts of modes, two evanescent surface plasmon modes and propagative modes. As one of the surface plasmon modes becomes propagative for some choice of parameters we adopt an adiabatic mode definition where we follow this mode into the propagative sector and count it together with the surface plasmon contribution, calling this contribution "plasmonic". The remaining modes are propagative cavity modes, which we call "photonic". The Casimir energy contains two main contributions, one coming from the plasmonic, the other from the photonic modes. Surprisingly we find that the plasmonic contribution to the Casimir energy becomes repulsive for intermediate and large mirror separations. Alternatively, we discuss the common surface plasmon defintion, which includes only evanescent waves, where this effect is not found. We show that, in contrast to an intuitive expectation, for both definitions the Casimir energy is the sum of two very large contributions which nearly cancel each other. The contribution of surface plasmons to the Casimir energy plays a fundamental role not only at short but also at large distances.Comment: 10 pages, 3 figures. TQMFA200

    Casimir energy and geometry : beyond the Proximity Force Approximation

    Full text link
    We review the relation between Casimir effect and geometry, emphasizing deviations from the commonly used Proximity Force Approximation (PFA). We use to this aim the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non planar mirrors give rise to non-specular reflection with wavevectors and field polarisations mixed. The general formalism has already been fruitfully used for evaluating the effect of roughness on the Casimir force as well as the lateral Casimir force or Casimir torque appearing between corrugated surfaces. In this short review, we focus our attention on the case of the lateral force which should make possible in the future an experimental demonstration of the nontrivial (i.e. beyond PFA) interplay of geometry and Casimir effect.Comment: corrected typos, added references, QFEXT'07 special issue in J. Phys.

    Postmortem imaging as a complementary tool for the investigation of cardiac death.

    Get PDF
    In the past 2 decades, modern radiological methods, such as multiple detector computed tomography (MDCT), MDCT-angiography, and cardiac magnetic resonance imaging (MRI) were introduced into postmortem practice for investigation of sudden death (SD), including cases of sudden cardiac death (SCD). In forensic cases, the underlying cause of SD is most frequently cardiovascular with coronary atherosclerotic disease as the leading cause. There are many controversies about the role of postmortem imaging in establishing the cause of death and especially the value of minimally invasive autopsy techniques. This paper discusses the state of the art for postmortem radiological evaluation of the heart compared to classical postmortem examination, especially in cases of SCD. In SCD cases, postmortem CT is helpful to estimate the heart size and to visualize haemopericardium and calcified plaques and valves, as well as to identify and locate cardiovascular devices. Angiographic methods are useful to provide a detailed view of the coronary arteries and to analyse them, especially regarding the extent and location of stenosis and obstruction. In postsurgical cases, it allows verification and documentation of the patency of stents and bypass grafts before opening the body. Postmortem MRI is used to investigate soft tissues such as the myocardium, but images are susceptible to postmortem changes and further work is necessary to increase the understanding of these radiological aspects, especially of the ischemic myocardium. In postsurgery cases, the value of postmortem imaging of the heart is reportedly for the diagnostic and documentation purposes. The implementation of new imaging methods into routine postmortem practice is challenging, as it requires not only an investment in equipment but, more importantly, investment in the expertise of interpreting the images. Once those requirements are implemented, however, they bring great advantages in investigating cases of SCD, as they allow documentation of the body, orientation of sampling for further analyses and gathering of other information that cannot be obtained by conventional autopsy such as a complete visualization of the vascular system using postmortem angiography.Key pointsThere are no established guidelines for the interpretation of postmortem imaging examination of the heartAt present, postmortem imaging methods are considered as less accurate than the autopsy for cardiac deathsPostmortem imaging is useful as a complementary tool for cardiac deathsThere is still a need to validate postmortem imaging in cardiac deaths by comparing with autopsy findings

    Schur elements for the Ariki-Koike algebra and applications

    Full text link
    We study the Schur elements associated to the simple modules of the Ariki-Koike algebra. We first give a cancellation-free formula for them so that their factors can be easily read and programmed. We then study direct applications of this result. We also complete the determination of the canonical basic sets for cyclotomic Hecke algebras of type G(l,p,n)G(l,p,n) in characteristic 0.Comment: The paper contains the results of arXiv:1101.146

    Coupled surface polaritons and the Casimir force

    Full text link
    The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple analytical estimate of the Casimir force at short distances. We recover the result known for Drude metals without absorption and compute the correction for weakly absorbing materials.Comment: revised version submitted to Phys. Rev. A, 06 November 200

    Casimir energy and entropy between dissipative mirrors

    Full text link
    We discuss the Casimir effect between two identical, parallel slabs, emphasizing the role of dissipation and temperature. Starting from quite general assumptions, we analyze the behavior of the Casimir entropy in the limit T->0 and link it to the behavior of the slab's reflection coefficients at low frequencies. We also derive a formula in terms of a sum over modes, valid for dissipative slabs that can be interpreted in terms of a damped quantum oscillator.Comment: 8 pages, 1 figur

    The Scattering Approach to the Casimir Force

    Full text link
    We present the scattering approach which is nowadays the best tool for describing the Casimir force in realistic experimental configurations. After reminders on the simple geometries of 1d space and specular scatterers in 3d space, we discuss the case of stationary arbitrarily shaped mirrors in electromagnetic vacuum. We then review specific calculations based on the scattering approach, dealing for example with the forces or torques between nanostructured surfaces and with the force between a plane and a sphere. In these various cases, we account for the material dependence of the forces, and show that the geometry dependence goes beyond the trivial {\it Proximity Force Approximation} often used for discussing experiments.Comment: Proceedings of the QFEXT'09 conference (Oklahoma, 2009

    Comparative genetic analysis of trichome-less and normal pod genotypes of Mucuna pruriens (Fabaceae)

    Get PDF
    ABSTRACT. Velvet bean (Mucuna pruriens) seeds contain the catecholic amino acid L-DoPA (L-3,4-dihydroxyphenylalanine), which is a neurotransmitter precursor and used for the treatment of Parkinson's disease and mental disorders. The great demand for L-DoPA is largely met by the pharmaceutical industry through extraction of the compound from wild populations of this plant; commercial exploitation of this compound is hampered because of its limited availability. The trichomes present on the pods can cause severe itching, blisters and dermatitis, discouraging cultivation. We screened genetic stocks of velvet bean for the trichome-less trait, along with high seed yield and L-DoPA content. The highest yielding trichome-less elite strain was selected and indentified on the basis of a PCR-based DNA fingerprinting method (RAPD), using deca-nucleotide primers. A genetic similarity index matrix was obtained through multivariant analysis using Nei and Li's coefficient. The similarity coefficients were used to generate a tree for cluster analysis using the UPGMA method. Analysis of amplification spectra of 408 bands obtained with 56 primers allowed us to distinguish a trichome-less elite strain of M. pruriens

    Observer Bias and the Detection of Low-Density Populations

    Get PDF
    Monitoring programs increasingly are used to document the spread of invasive species in the hope of detecting and eradicating low-density infestations before they become established. However, interobserver variation in the detection and correct identification of low-density populations of invasive species remains largely unexplored. In this study, we compare the abilities of volunteer and experienced individuals to detect low-density populations of an actively spreading invasive species and we explore how interobserver variation can bias estimates of the proportion of sites infested derived from occupancy models that allow for both false negative and false positive (misclassification) errors. We found that experienced individuals detected small infestations at sites where volunteers failed to find infestations. However, occupancy models erroneously suggested that experienced observers had a higher probability of falsely detecting the species as present than did volunteers. This unexpected finding is an artifact of the modeling framework and results from a failure of volunteers to detect low-density infestations rather than from false positive errors by experienced observers. Our findings reveal a potential issue with site occupancy models that can arise when volunteer and experienced observers are used together in surveys.Other Research Uni
    corecore