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Abstract 24 

Monitoring programs increasingly are used to document the spread of invasive species in the 25 

hope of detecting and eradicating low-density infestations before they become established. 26 

However, interobserver variation in the detection and correct identification of low-density 27 

populations of invasive species remains largely unexplored. In this study, we compare the 28 

abilities of volunteer and experienced individuals to detect low-density populations of an actively 29 

spreading invasive species and we explore how interobserver variation can bias estimates of the 30 

proportion of sites infested derived from occupancy models that allow for both false negative 31 

and false positive (misclassification) errors. We found that experienced individuals detected 32 

small infestations at sites where volunteers failed to find infestations. However, occupancy 33 

models erroneously suggested that experienced observers had a higher probability of falsely 34 

detecting the species as present than did volunteers. This unexpected finding is an artifact of the 35 

modeling framework and results from a failure of volunteers to detect low-density infestations 36 

rather than from false positive errors by experienced observers. Our findings reveal a potential 37 

issue with site occupancy models that can arise when volunteer and experienced observers are 38 

used together in surveys.  39 

 40 

Keywords: Citizen science, hemlock woolly adelgid, invasive species, monitoring, occurrence 41 

probability, site occupancy models, survey, volunteer  42 

 43 

Introduction 44 

The growing threat posed by invasive species has focused increased attention on the 45 

importance of documenting the distribution and spread of introduced organisms. Monitoring 46 
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programs aimed at detecting low-density 'founder' populations can play a critical role in slowing 47 

or even stopping the spread of harmful invasives by identifying recently-established populations 48 

that can be targeted for control and/or eradication (Lodge et al. 2006). Even partially successful 49 

programs of this sort can lower densities sufficiently for Allee effects and stochastic events to 50 

substantially increase the probability of subsequent population collapse (Liebhold and Tobin 51 

2008). These efforts have proven remarkably successful against actively-dispersing species like 52 

the gypsy moth, Lymantria dispar L., that respond to pheromones or other cues (e.g., the gypsy 53 

moth ‘Slow the Spread’ program; Sharov et al. 2002). Low-density populations of species that 54 

disperse passively by means of wind, water, or phoresy, however, often prove far more difficult 55 

to locate. Without the ability to attract the organisms to a trapping location, researchers face the 56 

often-daunting task of repeatedly searching potential habitats for low-density populations of the 57 

invading species. 58 

The challenges of successfully completing the labor-intensive surveys necessary to 59 

document the spread of invasive species have been met in part by volunteer-based or ‘citizen 60 

science’ monitoring programs (e.g., CitSci.org). Such programs rely on concerned individuals, 61 

from schoolchildren to retirees, as cost-effective early warning and continual monitoring systems 62 

that provide the primary data for large-scale scientific studies and management responses. There 63 

are now more than 200 citizen-science programs operating in North America and their popularity 64 

is growing worldwide (Cohn 2008). 65 

Although the educational and scientific benefits of volunteer-based invasive species 66 

monitoring programs are clear, the reliability of data collected by novice individuals has 67 

sometimes been questioned (Cohn 2008, Delaney et al. 2008). These concerns stem mostly from 68 

a lack of studies comparing the quality of volunteer- versus professionally-collected data rather 69 
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than from studies demonstrating that volunteers collect unreliable data. In the context of 70 

monitoring low-density populations of invasive species, the main concern is that novice 71 

observers may have a lower probability of detecting the species when it present and/or a higher 72 

probability of misidentification (i.e., falsely observing the species as present when it is in fact 73 

absent) than do experienced individuals. If true, then differences in the ability of observers to 74 

detect and correctly identify low-density populations of invasive species may represent an 75 

important, but largely undocumented source of sampling variation and bias in invasive species 76 

monitoring programs. 77 

 The detectability of species and observer bias both have important implications for 78 

documenting current distributions of invasive species and for developing reliable estimates of 79 

changes in these distributions. Site occupancy modeling (MacKenzie et al. 2006) has emerged in 80 

recent years as a means of estimating the proportion of sites truly occupied by a species given 81 

that organisms are often detected imperfectly, i.e., the probability of detecting the species is often 82 

less than one. If the probability of detecting a species is <1, as is certainly the case for low-83 

density populations of actively spreading invasive species, then some individuals will go 84 

undetected and the actual number of occupied sites will be greater than the number of sites at 85 

which the species was actually detected. The initial model developed for estimating site 86 

occupancy rates (MacKenzie et al. 2002) considered only the possibility of 'false negatives', 87 

cases in which the species is present at a location but goes undetected. Royle and Link (2006) 88 

extended the MacKenzie et al. (2002) model to include the possibility of 'false positives', 89 

situations in which observers misidentify the target species and report it as present when the 90 

species is in fact absent. If misidentifications are common in a survey, then the true number of 91 

sites occupied could be less than the number of sites at which the species was observed. Even 92 
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low false positive rates have been shown to induce extreme bias in estimates of the proportion of 93 

occupied sites (Royle and Link 2006), but the impacts of observer bias on estimates of the 94 

proportion of sites infested by invasive species remains poorly explored. 95 

In this study, we first compare the abilities of inexperienced volunteers and experienced 96 

observers to detect low-density populations of an actively spreading forest pest, the hemlock 97 

woolly adelgid. We then use these data to explore the general question of how interobserver 98 

variation can bias estimates of the proportion of sites infested derived from occupancy models. 99 

We hypothesized that relative to experienced observers, novice individuals should be less likely 100 

to detect low-density populations and would be more prone to misidentification of the study 101 

species. To explore these hypotheses, we use maximum likelihood methods to select among 102 

occupancy models that consider differences in the ability of observers to both detect and 103 

correctly identify the hemlock woolly adelgid. We parameterize these models using data from a 104 

420-tree survey conducted by nine volunteers and three experienced individuals. Our results 105 

support the notion that volunteers and experienced observers differ in their ability to detect low-106 

density populations and that such differences in observer ability can bias estimates of the 107 

proportion of sites occupied. However, this bias manifests itself in unexpected ways. 108 

 109 

Materials and Methods 110 

Study species 111 

The hemlock woolly adelgid, Adelges tsugae Annand ('HWA'; Hemiptera: Adelgidae) is 112 

an actively-spreading invasive pest of eastern hemlock (Tsuga canadensis (L.) Carr.) and 113 

Carolina hemlock (Tsuga caroliniana Englemann) in the eastern United States (McClure and 114 

Cheah 1999). HWA is a minuscule (<1-mm long adult), flightless insect that in the US is both 115 
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obligately parthenogenetic and exclusively passively dispersed (McClure 1990). The 116 

parthenogenetic nature of HWA means that even a single colonizing individual can start a new 117 

infestation, producing an initially low-density population that only can be detected by costly and 118 

time-consuming surveys (Evans and Gregoire 2007). Further, Costa and Onken (2007) list 119 

several objects common on hemlock foliage that might be confused with HWA by observers 120 

with varying skill levels. These include spider ovisacs, pine sap from adjacent conifers, froth 121 

from spittle bugs, and wool from white pine aphids blown from neighboring trees.  122 

 123 

Study area 124 

We sampled hemlock trees in the 487-ha Cadwell Memorial Forest in Pelham, 125 

Massachusetts (N42.37°, W72.42°), an experimental forest managed by the University of 126 

Massachusetts at Amherst. Cadwell Forest is located in the central hardwood region of southern 127 

New England and includes discrete stands of eastern hemlock. Before 2007, no HWA 128 

infestations had been detected at Cadwell Forest and the local hemlock trees appeared uniformly 129 

healthy (J. Elkinton, unpublished data). In the late winter of 2008, however, ad hoc surveys 130 

revealed low levels of HWA infestations on several trees. Hemlock stands in this forest thus 131 

provide an ideal venue to compare the ability of volunteer and experienced observers to detect 132 

early low-density HWA invasions. 133 

 134 

Sampling design 135 

Hemlock often grows in nearly monospecific stands that are patchily distributed across 136 

the landscape (Ellison et al. 2005). We selected five hemlock stands (~ 1×104 m2 each) for 137 

sampling that were primarily (>50%) comprised of hemlock trees !10 m in height such that a 138 
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portion of each tree could be sampled from the ground. All stands were bordered by hardwood 139 

forests, allowing the natural boundaries of each stand to be readily identified. Within each stand, 140 

all hemlock trees >0.5 m in height were numbered using aluminum tags and marked with 141 

flagging tape to improve visibility. We marked a total of 420 hemlock trees in the five stands 142 

(mean number of trees per stand = 80, range = 31 to 146). 143 

Twelve observers participated in the sampling effort: three experienced individuals who 144 

perform field research on HWA and nine volunteers who had no prior experience sampling for 145 

HWA. Prior to the sampling, the volunteers were trained for fifteen minutes on the sampling 146 

methodology (see below) and on identifying HWA infestations, including objects that could be 147 

confused with HWA. Each person was then assigned to one of four groups (n=3 persons per 148 

group). Two of the groups entirely were comprised of volunteers (hereafter referred to as 149 

'volunteer-only'). The remaining two groups contained one experienced and two volunteer 150 

individuals and two experienced and one volunteer individual (hereafter referred to as 151 

'volunteer/experienced'). Each group was provided a numbered list of trees to sample that could 152 

be located in the field by the corresponding numbered tag on each tree. To control for possible 153 

heterogeneity in infestation and detection rates between stands, each group was randomly 154 

assigned trees to sample in multiple stands. 155 

Our sampling design followed the protocol described by MacKenzie et al. (2006) for a 156 

single-species, single-season occupancy model, with individual hemlock trees regarded as sites. 157 

Occupancy modeling requires that sites must be visited by at least two independent observers, 158 

with each observer recording the presence/absence of the target species at each site. In this study, 159 

three observers from the same group visited each tree independently. Observers searched all 160 

accessible branches for evidence of white woolly masses characteristic of the HWA sistens 161 
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generation. Each search continued until either HWA was detected or a two-minute sampling 162 

period had expired. To ensure that sampling was independent, no two observers sampled a tree at 163 

the same time and observers were instructed not to communicate the infestation status of trees to 164 

the other observers in their group. Sampling occurred on April 26th, 2008, when the white woolly 165 

masses produced by HWA are at their largest and most visible; this time period is generally 166 

considered the optimal sampling period for HWA (Costa and Onken 2007). The sessile nature of 167 

the HWA sistens generation precludes any changes in infestation status during our study.  168 

To examine whether there were differences between volunteers and experienced 169 

individuals in terms of the density of infestations detected by each type of observer, two 170 

experienced individuals involved in the original survey returned the following week to all trees 171 

where HWA was detected.  All accessible branches thoroughly were searched and the number of 172 

white wooly masses observed on the tree was counted. This second, more thorough survey 173 

provided an estimate of the number of detectable individuals on the tree. We used a paired t-test 174 

on log-transformed HWA abundance to compare the mean abundance of HWA infestations that 175 

were detected by any of the nine volunteers to the mean abundance of HWA infestations that 176 

were detected by only the three experienced individuals and but not by any of the nine 177 

volunteers. 178 

 179 

Occupancy modeling 180 

We examined how differences in detection abilities between observers influence 181 

estimates of the proportion of infested hemlock trees. The occupancy model framework proposed 182 

by Royle and Link (2006) allows the estimation of three parameters: ψ, the proportion of sites 183 

occupied (in our case, the proportion of infested hemlock trees), and two classification 184 



 9

probabilities. These probabilities are (A) p11, the 'detection probability', the probability of 185 

detecting the species, given that the species is actually present at the site; and (B) p10, the 186 

'misclassification probability', the probability of falsely detecting the species at an unoccupied 187 

site. Given our randomized sampling design, the number of trees sampled by each observer 188 

(minimum n=85, Tables 1 & 2), and the sessile nature of HWA, heterogeneity in detection and 189 

misclassification probabilities should result almost entirely from interobserver variation.  190 

We considered four models that make different assumptions regarding p11 and p10. The 191 

simplest model was the standard framework proposed by MacKenzie et al. (2002) that assumes 192 

false positives are not possible (p10 = 0) and that detection probabilities are constant across 193 

observers, or “ψ; p11(·); p10(0)”. The second model again assumes that false positives were not 194 

possible, but allows observers to differ in their probability of detecting HWA: “ψ; p11(t); p10(0)”. 195 

The final two models both incorporate the possibility of misclassification (p10 > 0, Royle and 196 

Link 2006), with the simpler of the two assuming that observers do not differ in their probability 197 

of detecting or misclassifying HWA: “ψ; p11(·); p10(·)”. The more complex of these two models 198 

assumes that observers can differ in their probability of detecting and misclassifying HWA: 199 

“ψ; p11(t); p10(t)”. Maximum-likelihood estimates of the model parameters can be obtained by 200 

maximizing numerically 201 

( ) ( )[ ] ( )[ ]( ){ }∏
=

−− −−+−∝
n

i

yTyyTy iiii ppppyppL
1

101011111011 111|,, ψψψ , 202 

where n is the number of sites (trees), T is the number of samples (observers), and y = { n
iy 1= } 203 

with yi representing the site-specific number of detections.  See Royle and Link (2006) for 204 

details. We used the small sample size form of Akaike’s Information Criterion (AICc) to 205 

determine the model best supported by the data (Burnham and Anderson 2002). Statistical 206 
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analyses were performed in R 2.7.2 (R Development Core Team 2006) using code modified from 207 

Royle and Link (2006) and in Microsoft Excel using Excel spreadsheets developed by Donovan 208 

and Hines (2007). Sample data, R code, and Excel spreadsheets are provided in the Supplement 209 

to this paper. 210 

 211 

Results  212 

The two volunteer-only groups detected HWA infestations on a smaller proportion of 213 

trees than did the two volunteer/experienced groups. One of the volunteer-only groups detected 214 

HWA on 14 of 86 sampled trees (naïve infestation rate = 0.163), and the other on 33 of 95 trees 215 

(naïve infestation rate = 0.347). In contrast, the two volunteer/experienced groups detected HWA 216 

on 57 of 125 trees (naïve infestation rate = 0.456) and on 69 of 114 trees (naïve infestation rate = 217 

0.605). Of the two volunteer/experienced groups, the group with the fewest volunteers realized 218 

the highest overall naïve infestation rate (0.605). When two experienced observers returned to 219 

the 173 trees to estimate the abundance of detected HWA infestations, HWA was found on 164 220 

trees. Experienced individuals detected smaller HWA infestations than volunteers (paired t-test, 221 

p = 0.017).  222 

The form of the best-supported model differed between volunteer-only groups and 223 

volunteer/experienced groups. For volunteer-only groups, model comparison by "AICc and 224 

normalized Akaike model selection weights (Burnham and Anderson 2002) revealed that models 225 

where the probability of misidentifying HWA was zero (p10 = 0) were best supported by the data 226 

(Table 1). However, the best-supported model for volunteer-only groups differed in their 227 

assumptions regarding whether observers differed in their probability of detecting HWA 228 

infestations. The best-supported model for one of the volunteer-only groups assumed that 229 
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observers differed in their detection probabilities, ψp11(t)p10(0), while the data for the other 230 

volunteer-only group most strongly supported the model ψp11(·)p10(0), which did not make this 231 

assumption. In contrast, the form of the best-supported model was the same for both 232 

volunteer/experienced groups (Table 2). For such groups, strongest support was for model 233 

ψp11(t)p10(t), where misclassification probabilities were greater than zero and both detection and 234 

misclassification probabilities differed between observers. There was little support for models 235 

where experienced and volunteer observers were assumed to have equal probabilities of 236 

detecting HWA infestations.  237 

When compared to volunteers in their group, experienced observers had a higher 238 

probability of detecting HWA infestations (Table 2). Unexpectedly, this was also true of the 239 

probability of misclassifying other organisms as HWA, with experienced observers having a 240 

higher probability of misclassifying HWA infestations than volunteers. This finding is an artifact 241 

of the models, the origin of which we discuss below. When comparing across groups, estimates 242 

of detection probabilities from the best-supported models ranged from 0.28-0.94, with the 243 

highest value obtained by an experienced observer and the lowest by a volunteer (Tables 1, 2). 244 

Detection probabilities for experienced observers were always greater than 0.75 and had a 245 

smaller range than those of volunteers (0.19 versus 0.44).  246 

Estimates of the proportion of trees infested from the best-supported models ranged from 247 

0.12-0.41. For volunteer-only groups, the estimated infestation rate was higher than the naïve 248 

infestation rate (Table 1). In contrast, the estimated infestation rate was considerably lower than 249 

the naïve infestation rate for groups containing an experienced observer (Table 2). 250 

251 
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Discussion 252 

The reliability of data collected from field surveys is directly related to sampling 253 

variation and bias in the methods used to gather the data and interobserver variation is one such 254 

source of bias. Our findings suggest that observer experience can be an important source of 255 

sampling variation and bias in the detection of low-density populations. However, when such 256 

surveys are used in an occupancy modeling framework that allows for misidentification, 257 

interobserver bias can be manifested in an unexpected manner. 258 

We found that experienced observers differed from volunteers in their ability to detect 259 

low-density infestations. Relative to volunteers, experienced observers (1) detected infestations 260 

at a greater proportion of trees, (2) had a higher probability of detecting infestations, and (3) 261 

detected smaller infestations. Although we were not surprised by these findings, we were 262 

surprised by the apparent result that experienced observers were more likely to misclassify HWA 263 

than volunteers. Although the possibility that experienced individuals are more likely to 264 

misidentify HWA cannot be discounted, Costa and Onken (2007) note that once detected, HWA 265 

are nearly unmistakable to a well-trained individual. An alternative explanation is suggested by a 266 

closer inspection of the detection histories (Table 3). For the team with one experienced observer 267 

and two volunteers, the two volunteer observers detected HWA on only 1 of 125 trees when the 268 

experienced observer did not. In contrast, the experienced individual detected HWA 23 times 269 

when the two volunteers did not. However, when the infested trees were resurveyed by two 270 

experienced observers to estimate the abundance of HWA, this additional survey detected 271 

infestations on 19 of these 23 trees. The detection histories for the group with two experienced 272 

individuals reveal a similar pattern.  273 
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Taken together, our results (A) suggest a failure by volunteers to detect low-density 274 

infestations rather than misidentification by experienced observers and (B) reveal an issue 275 

regarding the absence of statistical weighting in the model. In essence, the misclassification 276 

model assumes that there are two types of sites and the probability of detection is lower at one 277 

type of site than the other. The differences in detection probabilities between these two sites can 278 

arise either through misclassification (Royle and Link 2006) or through heterogeneity in 279 

detection. In this study, heterogeneity in detection associated with variation in abundance of 280 

HWA and differences in the ability of observers to detect low-density populations, rather than 281 

misclassification, is the factor most likely to be driving differences in detection between sites. In 282 

other words, the two types of sites in our study are those with relatively dense infestations that 283 

were detected by both volunteers and experienced observers and those with relatively low 284 

density infestations that were detected only by experienced individuals. However, as formulated, 285 

our models give equal weight to the quality of any individual’s observations. Therefore, when a 286 

low-density infestation is detected by one experienced observer, but missed by the remaining two 287 

volunteers, statistical support tips in favor of misclassification. This issue became apparent only 288 

when surveys completed by experienced observers were paired with those made by volunteers. 289 

Thus our findings caution against the use of observers of differing levels of experience in the 290 

same survey and suggest the need to include in models that allow for false positive errors survey-291 

specific covariates that account for biases in detection probabilities introduced by differences in 292 

observers (e.g., Bailey et al. 2004).  293 

Our findings also speak to how strongly misidentifications can bias estimates of the 294 

proportion of sites occupied (Royle and Link 2006). In the most extreme case, the modeled 295 

proportion of infested trees was nearly 4 times lower (0.12 versus 0.58, naïve infestation = 296 
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0.456), when misclassification probabilities were assumed to be greater than zero versus when 297 

they were assumed to be zero. Again, the modeled rate of 0.12 when misclassification 298 

probabilities were assumed to be greater than zero appears to be primarily a function of the 299 

model's spurious interpretation of valid detections made by experienced observers as instances of 300 

misclassification.  301 

What do our results say about the adequacy of data on the distribution of low-density 302 

populations collected by volunteers? We suggest that the answer to this question depends on the 303 

ultimate use of the data and on the system under study. For example, recent studies have 304 

demonstrated that volunteers can provide accurate data on the presence of invading species 305 

(Boudreau and Yan 2004; Delaney et al. 2008). These studies, both involving aquatic invasive 306 

species, dealt with either a relatively large and easy-to-detect organism (Delaney et al. 2008) or 307 

used volunteers to collect samples that were later verified by professionals (Boudreau and Yan 308 

2004). In contrast, HWA, though easy to identify to the trained eye, can be extremely difficult to 309 

detect when occurring at low densities (Evans and Gregoire 2007); our results suggest field 310 

experience can improve the ability to detect such infestations. Thus, we argue our findings speak 311 

more to issues regarding the importance of properly training volunteers and to the challenges of 312 

monitoring low-density or difficult-to-detect organisms (e.g., Milberg et al. 2008), rather than to 313 

the reliability of volunteer-based monitoring programs per se. For example, Lotz and Allen 314 

(2007) found that there was no difference in error rates between professional scientists and 315 

volunteers who had received the same training and who had little difference in actual field 316 

anuran-call-survey experience (see also Shirose et al. 1997; Genet and Sargent 2003). Further, 317 

multiple studies have demonstrated that observer bias generally decreases as observers become 318 

more experienced (Sauer et al. 1994; McLaren and Cadman 1999; Delaney et al. 2008). Taken 319 
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together, our results underscore the importance of adequate training for volunteers taking part in 320 

monitoring programs and the need to document and account for interobserver variation in 321 

analytical estimates of site occupancy rates (Lotz and Allen 2007; Pierce and Gutzwiller 2007). 322 

Future work in this area should consider the role of survey-specific covariates that account for 323 

interobserver variation in detection probabilities.  324 
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comprised entirely of volunteers. K, number of parameters in model; "AICc, small sample size 386 

form of Akaike’s information criterion (AICc) for each model, minus the AICc of the model with 387 

minimum AICc; w, normalized model selection weights; p11, the probability of detecting the 388 

species given that the species is actually present at the site; p10, the probability of falsely 389 

detecting the species at an unoccupied site. For model notation, symbols within parentheses 390 

indicate whether probabilities are assumed to be constant (·) or different (t) across surveys.  391 

 ∆AICc w K ψ-hat p11,1 p11,2 p11,3 p10,1 p10,2 p10,3

n = 95, ψ,naïve = 0.347           

 ψ; p11(t); p10=0 0 0.85 4 0.41 0.28 0.43 0.61 0 0 0   

 ψ; p11(·); p10=0 4.47 0.09 2 0.43 0.43 0.43 0.43 0 0 0 

 ψ; p11(t); p10(t) 6.57 0.03 7 0.39 0.27 0.46 0.65 0.02 0.00 0.00

 ψ; p11(·); p10(·) 6.61 0.03 3 0.43 0.43 0.43 0.43 0.00 0.00 0.00

            

n = 86, ψ,naïve = 0.163           

 ψ; p11(·); p10=0 0 0.62 2 0.17 0.72 0.72 0.72 0 0 0 

 ψ; p11(·); p10(·) 1.68 0.27 3 0.15 0.78 0.78 0.78 0.01 0.01 0.01

 ψ; p11(t); p10=0 3.44 0.11 4 0.17 0.63 0.77 0.77 0 0 0 

 ψ; p11(t); p10(t) 9.34 0.01 7 0.14 0.67 0.86 0.86 0.01 0.01 0.01

392 
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Table 2 – Comparison of models and parameter estimates for detection of HWA for groups 393 

comprised of both volunteers (V) and experienced observers (E, parameter estimates for 394 

experienced individuals are italicized). K, number of parameters in model; "AICc, small sample 395 

size form of Akaike’s information criterion (AICc) for each model, minus the AICc of the model 396 

with minimum AICc; w, normalized model selection weights; p11, the probability of detecting the 397 

species given that the species is actually present at the site; p10, the probability of falsely 398 

detecting the species at an unoccupied site. For model notation, symbols within parentheses 399 

indicate whether probabilities are assumed to be constant (·) or different (t) across surveys.  400 

 ∆AICc w K ψ-hat p11,1 p11,2 p11,3 p10,1 p10,2 p10,3

n = 114, ψ,naïve = 0.605     E E V E E V 

 ψ; p11(t); p10(t) 0 0.65 7 0.26 0.78 0.75 0.34 0.07 0.44 0.01

 ψ; p11(t); p10=0 1.2 0.35 4 0.72 0.36 0.72 0.13 0 0 0 

 ψ; p11(·); p10=0 56.71 0.00 2 0.84 0.35 0.35 0.35 0 0 0 

 ψ; p11(·); p10(·) 56.82 0.00 3 0.10 0.75 0.75 0.75 0.24 0.24 0.24

            

n = 125, ψ,naïve = 0.456     E V V E V V 

 ψ; p11(t); p10(t) 0 0.92 7 0.12 0.94 0.72 0.79 0.25 0.15 0.04

 ψ; p11(t); p10=0 5.06 0.08 4 0.58 0.57 0.37 0.22 0 0 0 

 ψ; p11(·); p10(·) 12.75 0.00 3 0.1 0.84 0.84 0.84 0.15 0.15 0.15

 ψ; p11(·); p10=0 19.18 0.00 2 0.61 0.37 0.37 0.37 0 0 0 



 20

Table 3 – Detection histories of HWA populations by group. Histories indicate whether HWA 401 

was determined to be present (1) or absent (0) for each of the three surveys. For groups with 402 

experienced observers surveys are ordered such that reading from left to right moves from 403 

experienced (E) to volunteer (V) observers (e.g., 100 for the group with one experienced 404 

observer and two volunteers indicates an instance when the experienced observer detected HWA 405 

but the two volunteers did not). 406 

Detection history EEV EVV VVV VVV 

111 6 8 2 6 

110 14 6 2 1 

011 2 1 9 3 

101 2 4 4 1 

100 7 23 3 1 

010 37 12 4 1 

001 0 3 9 1 

000 45 68 62 72 

 407 


