95 research outputs found

    An Exploratory Study Investigating Data Quality in the Healthcare Industry: What are the Implicatons for Daya Warehousing?

    Get PDF
    Maintaining quality data and information challenges today’s organizations, and is essential to good decisionmaking and competitive advantage. The purpose of this study is to understand the dimensions of data quality and to learn how managers perceive them. The 20 dimensions of data quality posited by Wang and Strong were used in this study. The relative importance of those dimensions by healthcare industry managers was assessed. Study findings indicate that all 20 of Wang and Strong’s data quality descriptive dimensions are important to the healthcare industry. Additionally, data from this exploratory research seems to suggest that there may not be a “one size fits all” model for data quality

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Abnormal Expression Of Homeobox Genes And Transthyretin In C9Orf72 Expansion Carriers

    Get PDF
    Objective: We performed a genome-wide brain expression study to reveal the underpinnings of diseases linked to a repeat expansion in chromosome 9 open reading frame 72 (C9ORF72). Methods: The genome-wide expression profile was investigated in brain tissue obtained from C9ORF72 expansion carriers (n = 32), patients without this expansion (n = 30), and controls (n = 20). Using quantitative real-time PCR, findings were confirmed in our entire pathologic cohort of expansion carriers (n = 56) as well as nonexpansion carriers (n = 31) and controls (n = 20). Results: Our findings were most profound in the cerebellum, where we identified 40 differentially expressed genes, when comparing expansion carriers to patients without this expansion, including 22 genes that have a homeobox (e.g., HOX genes) and/or are located within the HOX gene cluster (top hit: homeobox A5 [HOXA5]). In addition to the upregulation of multiple homeobox genes that play a vital role in neuronal development, we noticed an upregulation of transthyretin (TTR), an extracellular protein that is thought to be involved in neuroprotection. Pathway analysis aligned with these findings and revealed enrichment for gene ontology processes involved in (anatomic) development (e.g., organ morphogenesis). Additional analyses uncovered that HOXA5 and TTR levels are associated with C9ORF72 variant 2 levels as well as with intron-containing transcript levels, and thus, disease-related changes in those transcripts may have triggered the upregulation of HOXA5 and TTR. Conclusions: In conclusion, our identification of genes involved in developmental processes and neuroprotection sheds light on potential compensatory mechanisms influencing the occurrence, presentation, and/or progression of C9ORF72-related diseases

    Definitive Hosts of Versteria Tapeworms (Cestoda : Taeniidae) Causing Fatal Infection in North America

    Get PDF
    We previously reported fatal infection of a captive Bornean orangutan with metacestodes of a novel taeniid tapeworm, Versteria sp. New data implicate mustelids as definitive hosts of these tapeworms in North America. At least 2 parasite genetic lineages circulate in North America, representing separate introductions from Eurasia.Peer reviewe

    Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia.

    Get PDF
    No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability
    corecore