60 research outputs found

    Variability of BVOC emissions from a Mediterranean mixed forest in southern France with a focus on Quercus pubescens

    Get PDF
    International audienceWe aimed at quantifying biogenic volatile organic compound (BVOC) emissions in June from three Mediter-ranean species located at the O 3 HP site (southern France): Quercus pubescens, Acer monspessulanum and C. coggygria (for isoprene only). As Q. pubescens was shown to be the main BVOC emitter with isoprene representing ≈ 99 % of the carbon emitted as BVOC, we mainly focused on this species. C. coggygria was found to be a non-isoprene emitter (no other BVOCs were investigated). To fully understand both the canopy effect on Q. pubescens isoprene emissions and the inter-individual variability (tree to tree and within canopy), diurnal variations of isoprene were investigated from nine branches (seven branches located to the top of canopy at ≈ 4 m above ground level (a.g.l.), and two inside the canopy at ≈ 2 m a.g.l.). The Q. pubescens daily mean isoprene emission rate (ER d) fluctuated between 23 and 98 µgC g −1 DM h −1. Q. pubescens daily mean net assimilation (Pn) ranged between 5.4 and 13.8, and 2.8 and 6.4 µmol CO 2 m −2 s −1 for sunlit and shaded branches respectively. Both ER d and isoprene emission factors (Is), assessed according to Guenther et al. (1993) algorithm, varied by a factor of 4.3 among the sunlit branches. While sunlit branches ER d was clearly higher than for shaded branches, there was a non-significant variability of Is (59 to 77 µgC g −1 DM h −1). Diurnal variations of iso-prene emission rates (ERs) for sunlit branches were also investigated. ERs were detected at dawn 2 h after Pn became positive and were mostly exponentially dependent on Pn. Diurnal variations of ERs were not equally well described throughout the day by temperature (C T) and light (C L) parameters according to G93 algorithm. Temperature had more impact than photosynthetically active radiation (PAR) on the morning emissions increase, and ER was no longer correlated to C L × C T between solar noon (maximum ER) and mid-afternoon, possibly due to thermal stress of the plant. A comparison between measured and calculated emissions using two isoprene algorithms (G93 and MEGAN – Model of Emissions of Gases and Aerosols from Nature) highlighted the importance of isoprene emission factor Is value used, and some weakness in assessing isoprene emissions under Mediterranean climate conditions (drought) with current iso-prene models

    Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    Get PDF
    The CANOPEE project aims to better understand the biosphere–atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, Quercus pubescens Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mg m−2 h1. Net isoprene normalized flux (at 30 °C, 1000 μmol quanta m−2 s−1) was estimated at 7.4 mg m−2 h−1. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mg m−2 h−1, whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit. The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings proposing weak production yields of MVK and MACR, in remote forest regions where the NOx concentrations are low. In-canopy chemical oxidation of isoprene was found to be weak and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy

    Seasonal variations of <i>Quercus pubescens</i> isoprene emissions from an in natura forest under drought stress and sensitivity to future climate change in the Mediterranean area

    Get PDF
    Corrigendum en annexeInternational audienceAt a local level, biogenic isoprene emissions can greatly affect the air quality of urban areas surrounded by large vegetation sources, such as in the Mediterranean region. The impacts of future warmer and drier conditions on isoprene emissions from Mediterranean emitters are still under debate. Seasonal variations of Quercus pubescens gas exchange and isoprene emission rates (ER) were studied from June 2012 to June 2013 at the O3HP site (FrenchMediterranean) under natural (ND) and amplified (AD, 32 %) drought. While AD significantly reduced stomatal conductance to water vapour throughout the research period excluding August, it did not significantly preclude CO2 net assimilation, which was lowest in summer (≈−1 μmol CO2 m−2s−1). ER followed a significant seasonal pattern regardless of drought intensity, with mean ER maxima of 78.5 and 104.8 μgC g−1DMh−1 in July (ND) and August (AD) respectively and minima of 6 and < 2 μgC g−1DMh−1 in October and April respectively. The isoprene emission factor increased significantly by a factor of 2 in August and September under AD (137.8 and 74.3 μgC g−1DMh−1) compared with ND (75.3 and 40.21 μgC g−1DMh−1), but no significant changes occurred on ER. Aside from the June 2012 and 2013 measurements, the MEGAN2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) model was able to assess the observed ER variability only when its soil moisture activity factorγ SM was not operating and regardless of the drought intensity; in this case more than 80 % and 50 % of ER seasonal variability was assessed in the ND and AD respectively. We suggest that a specific formulation of γ SM be developed for the drought-adapted isoprene emitter, according to that obtained for Q. pubescens in this study ( γSM=0.192e51.93 SW with SW the soil water content). An isoprene algorithm (G14) was developed using an optimised artificial neural network (ANN) trained on our experimental dataset (ER+O3HP climatic and edaphic parameters cumulated over 0 to 21 days prior to the measurements). G14 assessed more than 80 % of the observed ER seasonal variations, regardless of the drought intensity. ERG14 was more sensitive to higher (0 to−7 days) frequency environmental changes under AD in comparison to ND. Using IPCC RCP2.6 and RCP8.5 climate scenarios, and SW and temperature as calculated by the ORCHIDEE land surface model, ERG14 was found to be mostly sensitive to future temperature and nearly insensitive to precipitation decrease (an annual increase of up to 240 % and at the most 10 % respectively in the most severe scenario). The main impact of future drier conditions in the Mediterranean was found to be an enhancement (+ 40 %) of isoprene emissions sensitivity to thermal stress

    Differential effects of sulindac on renal hemodynamic and fonctions in the rat

    No full text
    Abstract-poster edité dans European journal of Physiology (November 1995)info:eu-repo/semantics/nonPublishe
    corecore