318 research outputs found

    Homotopy equivalences between p-subgroup categories

    Full text link
    Let p be a prime number and G a finite group of order divisible by p. Quillen showed that the Brown poset of nonidentity p-subgroups of G is homotopy equivalent to its subposet of nonidentity elementary abelian subgroups. We show here that a similar statement holds for the fusion category of nonidentity p-subgroups of G. Other categories of p-subgroups of G are also considered.Comment: 19 pages. Second versio

    Opines stimulate induction of the vir genes of the Agrobacterium tumefaciens Ti plasmid.

    Get PDF
    Upon incubation of Agrobacterium tumefaciens A348 with acetosyringone, the vir genes encoded by the Ti (tumor-inducing) plasmid are induced. The addition of certain opines, including octopine, nopaline, leucinopine, and succinamopine, enhanced this induction 2- to 10-fold. The compounds mannopine, acetopine, arginine, pyruvate, and leucine did not stimulate the induction of the vir genes to such an extent. The enhancement of vir gene induction by opines depended on acetosyringone and the genes virA and virG. Opines stimulated the activity of the vir genes, the double-stranded cleavage of the T (transferred)-DNA at the border repeat sequences, and the production of T-strands by the bacterium. The transformation efficiency of cotton shoot tips was markedly increased by the addition of acetosyringone and nopaline at the time of infection

    On the basis of the Burnside ring of a fusion system

    Get PDF
    We consider the Burnside ring A(F) of F-stable S-sets for a saturated fusion system F defined on a p-group S. It is shown by S.P. Reeh that the monoid of F-stable sets is a free commutative monoid with canonical basis {αP}. We give an explicit formula that describes αP as an S-set. In the formula we use a combinatorial concept called broken chains which we introduce to understand inverses of modified Möbius functions. © 2014 Elsevier Inc

    Investigating Agrobacterium-Mediated Transformation of Verticillium albo-atrum on Plant Surfaces

    Get PDF
    Background: Agrobacterium tumefaciens has long been known to transform plant tissue in nature as part of its infection process. This natural mechanism has been utilised over the last few decades in laboratories world wide to genetically manipulate many species of plants. More recently this technology has been successfully applied to non-plant organisms in the laboratory, including fungi, where the plant wound hormone acetosyringone, an inducer of transformation, is supplied exogenously. In the natural environment it is possible that Agrobacterium and fungi may encounter each other at plant wound sites, where acetosyringone would be present, raising the possibility of natural gene transfer from bacterium to fungus. Methodology/Principal Findings: We investigate this hypothesis through the development of experiments designed to replicate such a situation at a plant wound site. A. tumefaciens harbouring the plasmid pCAMDsRed was co-cultivated with the common plant pathogenic fungus Verticillium albo-atrum on a range of wounded plant tissues. Fungal transformants were obtained from co-cultivation on a range of plant tissue types, demonstrating that plant tissue provides sufficient vir gene inducers to allow A. tumefaciens to transform fungi in planta. Conclusions/Significance: This work raises interesting questions about whether A. tumefaciens may be able to transform organisms other than plants in nature, or indeed should be considered during GM risk assessments, with furthe

    Prospectus, November 9, 1973

    Get PDF
    FORD - OUR NEXT PRESIDENT?; Faculty, Staff Evaluations Adopted As College Policy; Fellowships For Women Announced; Student Senate Vice-President Resigns Post; Debaters Take Third At IVC Meet; Vandalism Suspected In Fire; Parkland To Participate In Conference; Declaration Of Impeachment; Prospectus In Perspective; Letters From Our Readers; Student Opinion Survey; President\u27s Comment; The Short Circuit; Behind The Books; Counselors And Question Marks; Zindars Shares Her Experiences; $6 Bid Tops In Vets Dance, Slave-Auction; UFO\u27s: Citizens Vs. Air Force; The Pinkertons Are At Parkland; Allied Health Program; November Student Activities Parkland College; American Assoc. Of Univ. Women Host General Meeting Nov. 11; Peterson Addresses Phi Beta Lambda; PLATO Popular With Students, Teachers; Cycle Mishap Injures One; Road Rally; Mutt and Mortie; Evening Program Diversified Next Quarter At P/C; Geology Flight Delayed; Final Exam Schedule - Fall Quarter; Costs At School Dominate P.C.A. Senate Meeting; \u27Passion Play\u27 Not Dull; P/C Gen. Biology-Pollution, Genetics Other Relevant Topics; No Grease-Monkey Graduatess At Parkland; Campus Leaders Exchange Ideas at Allerton Meeting; Parkland Co-Hosts Veterans Conference; TB Examinations; Classified Ads; A Column By And For Women: Originality, The Cell; Monday\u27s Coach; Jim Redman, Jane Hawthorne Grab Parkland\u27s First Road Rally; Football Finals To Be Held Tuesday; Fast Freddy\u27s Football Forecast; WVLJ Plans Broadcasts Of PC Basketball; Thompson Wins Fast Freddy As Upsets Abound; Local Volunteer Suggests Grants; Lost And Found; Earle, Seger Go To N.J.C.A.A. Nationals; Parkland Cagers Start Practice For Nov. 29 Debut With Millikin; Wrestlers Open Workouts, Seven Spots Open On 10-Man Roster; Parkland College Basketball Schedule 1973-74; Parkland College Wrestling Schedule 1973-74; Bowing Bulletin Board; Callboard; Changes In Calendar, Staff Status, Registration Proposed; Cade Re-elected Board Chairmanhttps://spark.parkland.edu/prospectus_1973/1002/thumbnail.jp

    Advancing Crop Transformation in the Era of Genome Editing

    Get PDF
    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized

    Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant

    Get PDF
    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5—by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell—enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell

    Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation

    Get PDF
    We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning—a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath—a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting

    The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator

    Get PDF
    During the infection of plants, Agrobacterium tumefaciens introduces several Virulence proteins including VirE2, VirF, VirD5 and VirE3 into plant cells in addition to the T-DNA. Here, we report that double mutation of virF and virE3 leads to strongly diminished tumor formation on tobacco, tomato and sunflower. The VirE3 protein is translated from a polycistronic mRNA containing the virE1, virE2 and virE3 genes, in Agrobacterium. The VirE3 protein has nuclear localization sequences, which suggests that it is transported into the plant cell nucleus upon translocation. Indeed we show here that VirE3 interacts in vitro with importin-α and that a VirE3–GFP fusion protein is localized in the nucleus. VirE3 also interacts with two other proteins, viz. pCsn5, a component of the COP9 signalosome and pBrp, a plant specific general transcription factor belonging to the TFIIB family. We found that VirE3 is able to induce transcription in yeast when bound to DNA through the GAL4-BD. Our data indicate that the translocated effector protein VirE3 is transported into the nucleus and there it may interact with the transcription factor pBrp to induce the expression of genes needed for tumor development
    corecore