1,999 research outputs found

    Strongly Coupled Quark Gluon Plasma (SCQGP)

    Full text link
    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and a reasonably good fit to lattice results are obtained for (2+1)-flavors and 4-flavors QGP. Hence it is the first unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters.Comment: Revised with corrections and new results, Latex file (11 pages), postscript file of 7 figure

    THERMAL RADIATION FROM MAGNETIZED NEUTRON STARS: A look at the Surface of a Neutron Star.

    Full text link
    Surface thermal emission has been detected by ROSAT from four nearby young neutron stars. Assuming black body emission, the significant pulsations of the observed light curves can be interpreted as due to large surface temperature differences produced by the effect of the crustal magnetic field on the flow of heat from the hot interior toward the cooler surface. However, the energy dependence of the modulation observed in Geminga is incompatible with blackbody emission: this effect will give us a strong constraint on models of the neutron star surface.Comment: 10 pages. tar-compressed and uuencoded postcript file. talk given at the `Jubilee Gamow Seminar', St. Petersburg, Sept. 1994

    Evidence for the disintegration of KIC 12557548 b

    Get PDF
    Context. The Kepler object KIC 12557548 b is peculiar. It exhibits transit-like features every 15.7 hours that vary in depth between 0.2% and 1.2%. Rappaport et al. (2012) explain the observations in terms of a disintegrating, rocky planet that has a trailing cloud of dust created and constantly replenished by thermal surface erosion. The variability of the transit depth is then a consequence of changes in the cloud optical depth. Aims. We aim to validate the disintegrating-planet scenario by modeling the detailed shape of the observed light curve, and thereby constrain the cloud particle properties to better understand the nature of this intriguing object. Methods. We analysed the six publicly-available quarters of raw Kepler data, phase-folded the light curve and fitted it to a model for the trailing dust cloud. Constraints on the particle properties were investigated with a light-scattering code. Results. The light curve exhibits clear signatures of light scattering and absorption by dust, including a brightening in flux just before ingress correlated with the transit depth and explained by forward scattering, and an asymmetry in the transit light curve shape, which is easily reproduced by an exponentially decaying distribution of optically thin dust, with a typical grain size of 0.1 micron. Conclusions. Our quantitative analysis supports the hypothesis that the transit signal of KIC 12557548 b is due to a variable cloud of dust, most likely originating from a disintegrating object.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps

    Get PDF
    Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge—which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export

    An Analysis of the Chemical Composition of the Atmosphere of Venus on an AMS of the Venera-12 Using a Gas Chromatograph

    Get PDF
    Eight analyses of the atmosphere of Venus were made beginning at an altitude of 42 km right down to the surface of the planet. The following were detected in the atmosphere of Venus: nitrogen in concentrations of 2.5 plus or minus 0.5 volumetric %, argon ir concentrations (4 plus or minus 2) x 10 to the minus 3 power volumetric %, CO--(2.8 plus or minus 1.4) x 10 to the minus 3 power volumetric % and SO2 in concentrations (1.3 plus or minus 0.6) x 10 to the minus 2 power volumetric %. The upper limits were estimated for the content of oxygen and water equal to 2 x 10 to the minus 3 power and 10 to the minus 2 power volumetric %, respectively

    Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries

    Get PDF
    Inspiral signals from binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave interferometers (LIGO, Virgo, GEO-600 and TAMA-300). We present parameter-estimation simulations for inspirals of black-hole--neutron-star binaries using Markov-chain Monte-Carlo methods. For the first time, we have both estimated the parameters of a binary inspiral source with a spinning component and determined the accuracy of the parameter estimation, for simulated observations with ground-based gravitational-wave detectors. We demonstrate that we can obtain the distance, sky position, and binary orientation at a higher accuracy than previously suggested in the literature. For an observation of an inspiral with sufficient spin and two or three detectors we find an accuracy in the determination of the sky position of typically a few tens of square degrees.Comment: v2: major conceptual changes, 4 pages, 1 figure, 1 table, submitted to ApJ

    Infinite factorization of multiple non-parametric views

    Get PDF
    Combined analysis of multiple data sources has increasing application interest, in particular for distinguishing shared and source-specific aspects. We extend this rationale of classical canonical correlation analysis into a flexible, generative and non-parametric clustering setting, by introducing a novel non-parametric hierarchical mixture model. The lower level of the model describes each source with a flexible non-parametric mixture, and the top level combines these to describe commonalities of the sources. The lower-level clusters arise from hierarchical Dirichlet Processes, inducing an infinite-dimensional contingency table between the views. The commonalities between the sources are modeled by an infinite block model of the contingency table, interpretable as non-negative factorization of infinite matrices, or as a prior for infinite contingency tables. With Gaussian mixture components plugged in for continuous measurements, the model is applied to two views of genes, mRNA expression and abundance of the produced proteins, to expose groups of genes that are co-regulated in either or both of the views. Cluster analysis of co-expression is a standard simple way of screening for co-regulation, and the two-view analysis extends the approach to distinguishing between pre- and post-translational regulation

    The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies

    Get PDF
    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form
    corecore