102 research outputs found

    Trap-Assisted Charge Generation and Recombination in State-of-the-Art Organic Photodetectors

    Get PDF
    The performance of organic photodetectors is steadily improving, and the specific detectivity, as a key figure of merit, has reached values of 1012–1013 Jones, i.e., comparable to that of silicon diodes but still considerably lower than the intrinsic limit. As with other semiconductor devices, the electrical performance of state-of-the art organic photodiodes (OPDs) is presently determined to a high degree by the presence of chemical impurities or structural defects which create carrier trapping states within the bandgap of organic active layer. This review aims to provide a comprehensive and timely account of trap-assisted charge generation and recombination in OPDs, with emphasis on the impact of these phenomena on photodetector performance parameters such as, noise and dark current density, responsivity, response speed, and ultimately, specific detectivity.</p

    Understanding Differences in the Crystallization Kinetics between One-Step Slot-Die Coating and Spin Coating of MAPbI₃ Using Multimodal In Situ Optical Spectroscopy

    Get PDF
    To develop a detailed understanding about halide perovskite processing from solution, the crystallization processes are investigated during spin coating and slot-die coating of MAPbI3 at different evaporation rates by simultaneous in situ photoluminescence, light scattering, and absorption measurements. Based on the time evolution of the optical parameters it is found that for both processing methods initially solvent-complex-structures form, followed by perovskite crystallization. The latter proceeds in two stages for spin coating, while for slot-die coating only one perovskite crystallization phase occurs. For both processing methods, it is found that with increasing evaporation rates, the crystallization kinetics of the solvent-complex structure and the perovskite crystallization remain constant on a relative time scale, whereas the duration of the second perovskite crystallization in spin coating increases. This second perovskite crystallization appears restricted due to differences in solvent-complex phase morphologies from which the perovskite forms. The work emphasizes the importance of the exact precursor state properties on the perovskite formation. It further demonstrates that detailed analyses of multimodal optical in situ spectroscopy allows gaining a fundamental understanding of the crystallization processes that take place during solution processing of halide perovskites, independent from the specific processing method

    Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures

    Get PDF
    With the huge progress in micro-electronics and artificial intelligence, the ultrasound probe has become the bottleneck in further adoption of ultrasound beyond the clinical setting (e.g. home and monitoring applications). Today, ultrasound transducers have a small aperture, are bulky, contain lead and are expensive to fabricate. Furthermore, they are rigid, which limits their integration into flexible skin patches. New ways to fabricate flexible ultrasound patches have therefore attracted much attention recently. First prototypes typically use the same lead-containing piezo-electric materials, and are made using micro-assembly of rigid active components on plastic or rubber-like substrates. We present an ultrasound transducer-on-foil technology based on thermal embossing of a piezoelectric polymer. High-quality two-dimensional ultrasound images of a tissue mimicking phantom are obtained. Mechanical flexibility and effective area scalability of the transducer are demonstrated by functional integration into an endoscope probe with a small radius of 3 mm and a large area (91.2×14 mm2) non-invasive blood pressure sensor.</p

    Influence of solid-state microstructure on the electronic performance of 5,11-Bis(triethylsilylethynyl) anthradithiophene

    Get PDF
    The rich phase behavior of 5,11-bis(triethylsilylethynyl) anthradithiophene (TES ADT) - one of the most promising, solution-processable small-molecular organic semiconductors - is analyzed, revealing the highest performing polymorph among four solid-state phases, opening pathways toward the reliable fabrication of high-performance bottom-gate/bottom-contact transistors.We are very grateful to the UK’s Engineering and Physical Sciences Research Council, the Dutch Polymer Institute (LATFE programme), and the ACS Petroleum Fund (New Directions Proposal) for financial support. We in addition acknowledge the EC’s seventh Framework Program ONE-P project (Grant Agreement 212311) for funding. N.S. is in addition supported by a European Research Council (ERC) Starting Independent Researcher Fellowship, under the grant agreement No. 279587. G.B. and E.P. acknowledges support from the ESF Project GOSPEL (Ref Nr: 09-EuroGRAPHENE-FP-001. G.B. acknowledges support from the Slovenian Research Agency, program P1-0055. N.W.O. is acknowledged for granting the beamtime at BM26B. J.E.A. acknowledges the Office of Naval Research for their support of the synthesis of organic semiconductor materials. G.B. and E.P. acknowledges support from the ESF Project GOSPEL (Ref Nr: 09-EuroGRAPHENE-FP-001). G.B. acknowledges support from the Slovenian Research Agency, program P1-0055

    Roadmap on printable electronic materials for next-generation sensors

    Get PDF
    The dissemination of sensors is key to realizing a sustainable, ‘intelligent’ world, where everyday objects and environments are equipped with sensing capabilities to advance the sustainability and quality of our lives—e.g., via smart homes, smart cities, smart healthcare, smart logistics, Industry 4.0, and precision agriculture. The realization of the full potential of these applications critically depends on the availability of easy-to-make, low-cost sensor technologies. Sensors based on printable electronic materials offer the ideal platform: they can be fabricated through simple methods (e.g., printing and coating) and are compatible with high-throughput roll-to-roll processing. Moreover, printable electronic materials often allow the fabrication of sensors on flexible/stretchable/biodegradable substrates, thereby enabling the deployment of sensors in unconventional settings. Fulfilling the promise of printable electronic materials for sensing will require materials and device innovations to enhance their ability to transduce external stimuli—light, ionizing radiation, pressure, strain, force, temperature, gas, vapours, humidity, and other chemical and biological analytes. This Roadmap brings together the viewpoints of experts in various printable sensing materials—and devices thereof—to provide insights into the status and outlook of the field. Alongside recent materials and device innovations, the roadmap discusses the key outstanding challenges pertaining to each printable sensing technology. Finally, the Roadmap points to promising directions to overcome these challenges and thus enable ubiquitous sensing for a sustainable, ‘intelligent’ world
    • …
    corecore