1,921 research outputs found

    A tutorial on the CARE III approach to reliability modeling

    Get PDF
    The CARE 3 reliability model for aircraft avionics and control systems is described by utilizing a number of examples which frequently use state-of-the-art mathematical modeling techniques as a basis for their exposition. Behavioral decomposition followed by aggregration were used in an attempt to deal with reliability models with a large number of states. A comprehensive set of models of the fault-handling processes in a typical fault-tolerant system was used. These models were semi-Markov in nature, thus removing the usual restrictions of exponential holding times within the coverage model. The aggregate model is a non-homogeneous Markov chain, thus allowing the times to failure to posses Weibull-like distributions. Because of the departures from traditional models, the solution method employed is that of Kolmogorov integral equations, which are evaluated numerically

    The Ursinus Weekly, October 28, 1976

    Get PDF
    Ursinus News in Brief: Fourteen chosen for Who\u27s who; P.M. Rabin dismayed ; Garnet squad spoils Homecoming • McCarthy rep visits Ursinus • State candidates view higher education • An evening of one acts • Comment: Exercise your right • GOP and Dems: Aimless search?? • Letter to the editor: Election explainedhttps://digitalcommons.ursinus.edu/weekly/1060/thumbnail.jp

    It\u27s a Small World: Enhancing Human Cognition through Virtual Dioramas

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas

    Full text link
    We find a limit cycle in a quasi-equilibrium model of evaporative cooling of a two-component fermion gas. The existence of such a limit cycle represents an obstruction to reaching the quantum ground state evaporatively. We show that evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an atomic fermi gas further by photoassociating dimers near the bottom of the fermi sea.Comment: Submitted to Phys. Rev

    Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process

    Get PDF
    The EURO-GANEX process was developed forco-separating transuranium elements from irradiatednuclear fuels. A hot flow-sheet trial was performed in acounter-current centrifugal contactor setup, using a genuinehigh active feed solution. Irradiated mixed (carbide,nitride) U80Pu20 fast reactor fuel containing 20 % Pu wasthermally treated to oxidise it to the oxide form which wasthen dissolved in HNO3. From this solution uranium wasseparated to >99.9 % in a primary solvent extraction cycleusing 1.0 mol/L DEHiBA (N,N-di(2-ethylhexyl)isobutyramidein TPH (hydrogenated tetrapropene) as the organicphase. The raffinate solution from this process, containing10 g/L Pu, was further processed in a second cycle of solventextraction. In this EURO-GANEX flow-sheet, TRU andfission product lanthanides were firstly co-extracted intoa solvent composed of 0.2 mol/L TODGA (N,N,N′,N′-tetran-octyl diglycolamide) and 0.5 mol/L DMDOHEMA (N,N′-dimethyl-N,N′-dioctyl-2-(2-hexyloxy-ethyl) malonamide)dissolved in Exxsol D80, separating them from most otherfission and corrosion products. Subsequently, the TRUwere selectively stripped from the collected loaded solventusing a solution containing 0.055 mol/L SO3-Ph-BTP(2,6-bis(5,6-di(3-sulphophenyl)-1,2,4-triazin-3-yl)pyridinetetrasodium salt) and 1 mol/L AHA (acetohydroxamicacid) in 0.5 mol/L HNO3; lanthanides were finally strippedusing 0.01 mol/L HNO3. Approximately 99.9 % of the TRUand less than 0.1 % of the lanthanides were found in theproduct solution, which also contained the major fractionsof Zr and Mo

    Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and pApA collisions

    Full text link
    This manuscript is the outcome of the subgroup ``PDFs, shadowing and pApA collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for pApA collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in pApA collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in pApA collisions at the LHC are considered. The importance of the pApA program at the LHC is emphasized.Comment: The writeup of the working group "PDFs, shadowing and pApA collisions" for the CERN Yellow Report on Hard Probes in Heavy Ion Collisions at the LHC, 121 pages. Subgroup convenors: K.J. Eskola, J.w. Qiu (theory) and W. Geist (experiment). Editor: K.J. Eskol

    Multi-vessel stenting during primary percutaneous coronary intervention for acute myocardial infarction. A single-center experience

    Get PDF
    BACKGROUND: Recanalization of the culprit lesion is the main goal of primary angioplasty for acute ST-segment elevation myocardial infarction (STEMI). Patients presenting with acute myocardial infarction and multivessel disease are, therefore, usually subjected to staged procedures, with the primary percutaneous coronary intervention (PCI) confined to recanalization of the infarct-related artery (IRA). Theoretically at least, early relief of stenoses of non-infarct-related arteries could promote collateral circulation, which could help to limit the infarct size. However, the safety and feasibility of such an approach has not been adequately established. METHODS: In this single-center prospective study we examined 73 consecutive patients who had an acute STEMI and at least one or more lesions > or = 70% in a major epicardial vessel other than the infarct-related artery. In the first 28 patients, forming the multi-vessel (MV) PCI group, all lesions were treated during the primary procedure. In the following 45 patients, forming the culprit-only (CO) PCI group, only the culprit lesion was treated during the initial procedure, followed by either planned-staged or ischemia-driven revascularization of the non-culprit lesions. Fluoroscopy time and contrast dye amount were compared between both groups, and patients were followed up for one year for major adverse cardiac events (MACE) and other significant clinical events. RESULTS: The two groups were well balanced in terms of clinical characteristics, number of diseased vessels and angiographic characteristics of the culprit lesion. In the MV-PCI group, 2.51 lesions per patient were treated using 2.96 +/- 1.34 stents (1.00 lesions and 1.76 +/- 1.17 stents in the CO-PCI group, both p < 0.001). The fluoroscopy time increased from 10.3 (7.2-16.9) min in the CO-PCI group to 12.5 (8.5-19.3) min in the MV-PCI group (p = 0.22), and the amount of contrast used from 200 (180-250) ml to 250 (200-300) ml, respectively (p = 0.16). Peak CK and CK-MB were significantly lower in patients of the MV-PCI group (843 +/- 845 and 135 +/- 125 vs 1652 +/- 1550 and 207 +/- 155 U/l, p < 0.001 and 0.01, respectively). Similar rates of major adverse cardiac events at one year were observed in the two groups (24% and 28% in multi-vessel and culprit treatment groups, p = 0.73). The incidence of new revascularization in both infarct- and non-infarct-related arteries was also similar (24% and 28%, respectively, p = 0.73). CONCLUSION: We may state from this limited experience that a multi-vessel stenting approach for patients with acute STEMI and multi-vessel disease is feasible and probably safe during routine clinical practice. Our data suggest that this approach may help to limit the infarct size. However, larger studies, perhaps using drug-eluting stents, are still needed to further evaluate the safety and efficiency of this procedure, and whether it is associated with a lower need of subsequent revascularization and lower costs

    Evaporative cooling of trapped fermionic atoms

    Full text link
    We propose an efficient mechanism for the evaporative cooling of trapped fermions directly into quantum degeneracy. Our idea is based on an electric field induced elastic interaction between trapped atoms in spin symmetric states. We discuss some novel general features of fermionic evaporative cooling and present numerical studies demonstrating the feasibility for the cooling of alkali metal fermionic species 6^6Li, 40^{40}K, and 82,84,86^{82,84,86}Rb. We also discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including the effects of anisotropic interactions.Comment: to be publishe

    Evaporative Cooling of a Two-Component Degenerate Fermi Gas

    Full text link
    We derive a quantum theory of evaporative cooling for a degenerate Fermi gas with two constituents and show that the optimum cooling trajectory is influenced significantly by the quantum statistics of the particles. The cooling efficiency is reduced at low temperatures due to Pauli blocking of available final states in each binary collision event. We compare the theoretical optimum trajectory with experimental data on cooling a quantum degenerate cloud of potassium-40, and show that temperatures as low as 0.3 times the Fermi temperature can now be achieved.Comment: 6 pages, 4 figure
    • …
    corecore