27 research outputs found

    Scavenger properties of cultivated pig liver endothelial cells

    Get PDF
    BACKGROUND: The liver sinusoidal endothelial cells (LSEC) and Kupffer cells constitute the most powerful scavenger system in the body. Various waste macromolecules, continuously released from tissues in large quantities as a consequence of normal catabolic processes are cleared by the LSEC. In spite of the fact that pig livers are used in a wide range of experimental settings, the scavenger properties of pig LSEC has not been investigated until now. Therefore, we studied the endocytosis and intracellular transport of ligands for the five categories of endocytic receptors in LSEC. RESULTS: Endocytosis of five (125)I-labelled molecules: collagen α-chains, FITC-biotin-hyaluronan, mannan, formaldehyde-treated serum albumin (FSA), and aggregated gamma globulin (AGG) was substantial in cultured LSEC. The endocytosis was mediated via the collagen-, hyaluronan-, mannose-, scavenger-, or IgG Fc-receptors, respectively, as judged by the ability of unlabelled ligands to compete with labelled ligands for uptake. Intracellular transport was studied employing a morphological pulse-chase technique. Ninety minutes following administration of red TRITC-FSA via the jugular vein of pigs to tag LSEC lysosomes, cultures of the cells were established, and pulsed with green FITC-labelled collagen, -mannan, and -FSA. By 10 min, the FITC-ligands was located in small vesicles scattered throughout the cytoplasm, with no co-localization with the red lysosomes. By 2 h, the FITC-ligands co-localized with red lysosomes. When LSEC were pulsed with FITC-AGG and TRITC-FSA together, co-localization of the two ligands was observed following a 10 min chase. By 2 h, only partial co-localization was observed; TRITC-FSA was transported to lysosomes, whereas FITC-AGG only slowly left the endosomes. Enzyme assays showed that LSEC and Kupffer cells contained equal specific activities of hexosaminidase, aryl sulphates, acid phosphatase and acid lipase, whereas the specific activities of α-mannosidase, and glucuronidase were higher in LSEC. All enzymes measured showed considerably higher specific activities in LSEC compared to parenchymal cells. CONCLUSION: Pig LSEC express the five following categories of high capacity endocytic receptors: scavenger-, mannose-, hyaluronan-, collagen-, and IgG Fc-receptors. In the liver, soluble ligands for these five receptors are endocytosed exclusively by LSEC. Furthermore, LSEC contains high specific activity of lysosomal enzymes needed for degradation of endocytosed material. Our observations suggest that pig LSEC have the same clearance activity as earlier described in rat LSEC

    Contractile response of femoral arteries in pigs with acute liver failure

    Full text link
    BACKGROUND: Acute liver failure (ALF) is characterized haemodynamically by a progressive hyperdynamic circulation. The pathophysiological mechanism is unknown, but impaired contractility of vascular smooth muscle may play an important role. The aim of this study was to evaluate the vascular response to stimulation with norepinephrine and angiotensin II in endothelium-denuded femoral artery rings. METHODS: Norwegian Landrace pigs weighing 27.1 +/- 0.5 kg (mean +/- sx (standard error of the mean)) were used. ALF was induced by performing a portacaval shunt followed by ligation of the hepatic arteries (n = 6). Sham-operated animals served as controls (n = 5). Cumulative isometric concentration contraction curves were obtained after in vitro stimulation of the femoral artery rings with either angiotensin II (10(-13) - 10(-5) mol/L) or norepinephrine (10(-13) - 10(-3) mol/L). RESULTS: Pigs suffering from ALF developed a hyperdynamic circulation with an increased cardiac index (P = 0.017) and decreased systemic vascular resistance index (P = 0.015). Studies of the hind leg revealed a decreased vascular resistance index and increased blood flow compared to sham-operated controls (P = 0.003 and P = 0.01, respectively). Angiotensin II caused a concentration-dependent contraction of the arterial segments, with no significant differences in vascular responses between the two groups. Maximum force generated did not differ (55 +/- 7 versus 56 +/- 7 mN, P = 0.95). Furthermore, there were no differences for norepinephrine in the cumulative concentration-response curves and the maximum contractile force was not significantly different (87 +/- 8 versus 93 +/- 16 mN, P = 0.55). CONCLUSIONS: This study documents for the first time that there are no signs of endothelium-independent peripheral vascular hyporesponsiveness to angiotensin II and norepinephrine in pigs with ALF

    Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure

    Full text link
    We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation

    Albumin dialysis : a new therapeutic strategy for intoxication from protein-bound drugs

    Full text link
    Abstract Objective: Although water-soluble drugs can be removed by haemofiltration/haemodialysis, morbidity and mortality from intoxication with protein-bound drugs remains high. The present study investigates whether albumin dialysis in the form of the Molecular Adsorbents Recirculating System (MARS) is effective in removal of protein-bound drugs. Design: Prospective animal study. Setting: Surgical research laboratory in a university hospital. Subjects: Seven female Norwegian Landrace pigs. Intervention: We studied whether midazolam (97% albuminbound) and fentanyl (85% alpha-1- acid glycoprotein-bound), administered as anaesthetics to pigs with induced acute liver failure, could be removed by MARS dialysis lasting for 4 h. Measurements: After 4 h of dialysis, total and free anaesthetic concentrations were measured in the blood and dialysate from different segments of the MARS circuit. Main results: Midazolam: total plasma concentrations fell by 47.1€2.1% (in 4 h) across the MARS filter (p<0.01). The charcoal component of the system reduced the total dialysate drug concentration by 16.4€2.2% (p<0.05). Free midazolam removal followed a similar pattern. Fentanyl: total plasma concentrations fell by 56.1€2.4% (in 4 h) across the MARS filter (p<0.01). Clearance of fentanyl from the dialysate by the charcoal was 70€0.7% at 4 h (p<0.001). Conclusions: The results of the study show that MARS can remove both albumin and other protein-bound drugs efficiently from the plasma, and it may have a place for the treatment of patients suffering from intoxication with this class of compounds

    Muslime in Europa zwischen Globalisierung und Lokalisierung. Gesellschaftspolitische und theologische Perspektiven im Anschluss an Enes Karic und Tariq Ramadan

    Get PDF
    ). Culture media was collected from hyperoxic conditions (open bars) or normoxic conditions (filled bars) at 24 hours intervals. Final concentrations were estimated from individual standard curves. Generation of endogenous HOwas monitored in separate experiments at the indicated time-points in LSEC cultures by HO-mediated oxidation of DCFH-DA into DFC during 6 h (b). Values are total fluorescence emitted at 545 nm.<p><b>Copyright information:</b></p><p>Taken from "The influence of oxygen tension on the structure and function of isolated liver sinusoidal endothelial cells"</p><p>http://www.comparative-hepatology.com/content/7/1/4</p><p>Comparative Hepatology 2008;7():4-4.</p><p>Published online 5 May 2008</p><p>PMCID:PMC2408922.</p><p></p

    Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study

    Full text link
    BACKGROUND: Increased intracranial pressure (ICP) worsens the outcome of acute liver failure (ALF). This study investigates the underlying pathophysiological mechanisms and evaluates the therapeutic effect of albumin dialysis in ALF with use of the Molecular Adsorbents Recirculating System without hemofiltration/dialysis (modified, M-MARS). METHODS: Pigs were randomized into three groups: sham, ALF, and ALF + M-MARS. ALF was induced by hepatic devascularization (time = 0). M-MARS began at time = 2 and ended with the experiment at time = 6. ICP, arterial ammonia, brain water, cerebral blood flow (CBF), and plasma inflammatory markers were measured. RESULTS: ICP and arterial ammonia increased significantly over 6 hrs in the ALF group, in comparison with the sham group. M-MARS attenuated (did not normalize) the increased ICP in the ALF group, whereas arterial ammonia was unaltered by M-MARS. Brain water in the frontal cortex (grey matter) and in the subcortical white matter at 6 hrs was significantly higher in the ALF group than in the sham group. M-MARS prevented a rise in water content, but only in white matter. CBF and inflammatory mediators remained unchanged in all groups. CONCLUSION: The initial development of cerebral edema and increased ICP occurs independently of CBF changes in this noninflammatory model of ALF. Factor(s) other than or in addition to hyperammonemia are important, however, and may be more amenable to alteration by albumin dialysis

    Systemic and regional hemodynamics in pigs with acute liver failure and the effect of albumin dialysis

    Full text link
    OBJECTIVE: Acute liver failure (ALF) is haemodynamically characterized by a hyperdynamic circulation. The aims of this study were to investigate the systemic and regional haemodynamics in ALF, to measure changes in nitric oxide metabolites (NOx) and to evaluate whether these haemodynamic disturbances could be attenuated with albumin dialysis. MATERIAL AND METHODS: Norwegian Landrace pigs (23-30 kg) were randomly allocated to groups as controls (sham-operation, n = 8), ALF (hepatic devascularization, n = 8) and ALF + albumin dialysis (n = 8). Albumin dialysis was started 2 h after ALF induction and continued for 4 h. Systemic and regional haemodynamics were monitored. Creatinine clearance, nitrite/nitrate and catecholamines were measured. A repeated measures ANOVA was used to analyse the data. RESULTS: In the ALF group, the cardiac index increased (PGT < 0.0001), while mean arterial pressure (PG = 0.02) and systemic vascular resistance decreased (PGT < 0.0001). Renal resistance (PG = 0.04) and hind-leg resistance (PGT = 0.003) decreased in ALF. There was no difference in jejunal blood flow between the groups. ALF pigs developed renal dysfunction with increased serum creatinine (PGT = 0.002) and decreased creatinine clearance (P = 0.02). Catecholamines were significantly higher in ALF, but NOx levels were not different. Albumin dialysis did not attenuate these haemodynamic or renal disturbances. CONCLUSIONS: The haemodynamic disturbances during the early phase of ALF are characterized by progressive systemic vasodilatation with no associated changes in metabolites of NO. Renal vascular resistance decreased and renal dysfunction developed independently of changes in renal blood flow. After 4 h of albumin dialysis there was no attenuation of the haemodynamic or renal disturbances
    corecore