14 research outputs found

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    A global research priority agenda to advance public health responses to fatty liver disease

    Get PDF
    Background & aims An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community. Methods Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy. Results The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of ‘agree’ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (‘agree’ + ‘somewhat agree’); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% ‘agree’), 13 priorities had 90% combined agreement. Conclusions Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health community’s efforts to advance and accelerate responses to this widespread and fast-growing public health threat. Impact and implications An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat

    Dietary omega-3 polyunsaturated fatty acid does not influence the intestinal microbial communities of broiler chickens

    No full text
    © 2009 Poultry Science AssociationThe capacity for n-3 polyunsaturated fatty acids (PUFA) to improve broiler chicken growth, influence the intestinal microbial communities, and modify the PUFA content of meat was studied. Male Cobb 500 chickens were fed 1 of 4 diets from hatch: control (standard diet with no additives), ZnB (standard diet with added antibiotics), 2% SALmate (standard diet with 2% SALmate, which is composed of 42% fish oil and 58% starch), and 5% SALmate (standard diet with 5% SALmate). A 7-d energy metabolism study was conducted between d 15 and 22 posthatch. Birds were killed at d 25 and intestinal samples were collected to assess microbial communities by terminal restriction fragment length polymorphism and Lactobacillus PCR-denaturing gradient gel electrophoresis. Diet did not affect BW, feed intake, feed conversion, or ileal digestible energy (P > 0.05). Apparent ME was greater in ZnB-fed birds compared with all other diets (P 0.05). Birds fed 2% SALmate had a significantly different cecal Lactobacillus species profile compared with birds fed the control diet (P < 0.05); however, no differences were observed in birds fed 5% SALmate compared with birds fed all other diets. In addition to the expected increase in breast tissue n-3 fatty acid levels, a low level of dietary n-3 PUFA also altered the intestinal Lactobacillus species profiles. However, n-3 PUFA supplementation did not alter the overall microbial communities or broiler performance.M. S. Geier, V. A. Torok, G. E. Allison, K. Ophel-Keller, R. A. Gibson, C. Munday and R. J. Hughe

    Inositol Phosphates and Phosphoinositides in Health and Disease

    No full text
    corecore