5 research outputs found

    Comparative effects of incretin-based therapy on doxorubicin-induced nephrotoxicity in rats: the role of SIRT1/Nrf2/NF-κB/TNF-α signaling pathways

    Get PDF
    Introduction: Nephrotoxicity represents a major complication of using doxorubicin (DOX) in the management of several types of cancers. Increased oxidative stress and the activation of inflammatory mediators play outstanding roles in the development of DOX-induced kidney damage. This study aimed to investigate whether the two pathways of incretin-based therapy, glucagon-like peptide-1 receptor agonist (presented as semaglutide, SEM) and dipeptidyl peptidase-4 inhibitor (presented as alogliptin, ALO), differentially protect against DOX-induced nephrotoxicity in rats and to clarify the underlying molecular mechanisms.Methods: Adult male rats were divided into six groups: control (received the vehicle), DOX (20 mg/kg, single I.P. on day 8), DOX + ALO (20 mg/kg/day, P.O. for 10 days), DOX + SEM (12 μg/kg/day, S.C. for 10 days), ALO-alone, and SEM-alone groups. At the end of the study, the animals were sacrificed and their kidney functions, oxidative stress, and inflammatory markers were assessed. Kidney sections were also subjected to histopathological examinations.Results: The co-treatment with either ALO or SEM manifested an improvement in the kidney functions, as evidenced by lower serum concentrations of creatinine, urea, and cystatin C compared to the DOX group. Lower levels of MDA, higher levels of GSH, and increased SOD activity were observed in either ALO- or SEM-treated groups than those observed in the DOX group. DOX administration resulted in decreased renal expressions of sirtuin 1 (SIRT1) and Nrf2 with increased NF-κB and TNF-α expressions, and these effects were ameliorated by treatment with either ALO or SEM.Discussion: Co-treatment with either ALO or SEM showed a renoprotective effect that was mediated by their antioxidant and anti-inflammatory effects via the SIRT1/Nrf2/NF-κB/TNF-α pathway. The fact that both pathways of the incretin-based therapy demonstrate an equally positive effect in alleviating DOX-induced renal damage is equally noteworthy

    Rosuvastatin Induces Renal HO-1 Activity and Expression Levels as a Main Protective Mechanism against STZ-Induced Diabetic Nephropathy

    No full text
    Background and Objectives: Nephroprotective effect of statins is still controversial. The aim of this study was to investigate the possible hemin-like nephroprotective effect of rosuvastatin (RSV) in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: DN was induced in rats via a single dose of 50 mg/kg STZ i.p., with or without RSV (10 mg/kg orally) for 30 days. To investigate hemin-like effect of RSV on renal heme oxygenase-1 (HO-1), RSV was administered in the presence or absence of an inhibitor of HO-1; zinc protoporphyrin-XI (ZnPP), in a dose of 50 µmol/kg i.p. Results: Induction of diabetes with STZ caused, as expected, significant hyperglycemia, as well as deteriorated kidney function, lipid profile and histopathological architecture. The DN group also showed renal oxidative stress, indicated by decreased superoxide dismutase, catalase, and reduced glutathione, with increased malondialdehyde, myeloperoxidase and nitric oxide. Renal expression of inflammatory marker TNF-α, and pro-apoptotic marker caspase 3, were also increased in the DN group. Administration of RSV in DN rats did not improve glucose level but succeeded in recovering kidney function and normal structure as well as improving the lipid profile. RSV also improved renal oxidative, inflammatory, and apoptotic statuses. Interestingly, the administration of RSV increased renal expression and activity of HO-1 compared to the untreated DN group. Co-administration of ZnPP blocked the effect of RSV on HO-1 and deteriorated all RSV favorable effects. Conclusions: RSV can protect against DN, at least in part, via increasing renal HO-1 expression and/or activity, which seems to be upstream to RSV antioxidant, anti-inflammatory, and anti-apoptotic effects

    Combined treatments with metformin and phosphodiesterase inhibitors alleviate nonalcoholic fatty liver disease in high-fat diet fed rats: a comparative study

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is an excessive accumulation of fats in the liver resulting in hepatic inflammation and fibrous tissue formation along with insulin resistance. This study was designed to investigate the possible protective effects of metformin alone and in combination with different phosphodiesterase inhibitors (PDEIs). Rats were fed a high-fat diet (HFD) for 16 weeks to induce NAFLD. Starting from week 12, rats received metformin alone or in combination with pentoxifylline, cilostazol, or sildenafil. HFD administration resulted in hepatic steatosis and inflammation in rats. In addition, liver index, body composition index, activities of liver enzymes, and serum lipids deviated from normal. Further, significant elevations were recorded compared to control in terms of serum glucose, insulin, and HOMA-IR (homeostasis model assessment index for insulin resistance), oxidative stress parameters, hepatic TNF-α and NF-κB gene expression, and iNOS protein expression. Rats treated with metformin showed a significant improvement in the aforementioned parameters. However, the addition of pentoxifylline to metformin treatment synergized its action and produced a fortified effect against HFD-induced NAFLD better than other PDEIs. Data from this study indicated that combined treatment of metformin and pentoxifylline had the most remarkable ameliorated effects against HFD-induced NAFLD; further clinical investigations are needed to approve PDEIs for NAFLD treatment.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Mechanistic Protective Effect of Cilostazol in Cisplatin-Induced Testicular Damage via Regulation of Oxidative Stress and TNF-α/NF-κB/Caspase-3 Pathways

    No full text
    Despite being a potent anticancer drug, cisplatin has limited applicability due to its adverse effects, such as testicular damage. Consequently, reducing its toxicity becomes necessary. In this study, a selective phosphodiesterase-3 inhibitor, cilostazol, which is used to treat intermittent claudication, was examined for its ability to abrogate cisplatin-induced testicular toxicity. Its ameliorative effect was compared to that of two phosphodiesterase inhibitors, tadalafil and pentoxifylline. The study also focused on the possible mechanisms involved in the proposed protective effect. Cisplatin-treated rats showed a significant decrease in sperm number and motility, serum testosterone, and testicular glutathione levels, as well as a significant elevation in malondialdehyde, total nitrite levels, and the protein expression of tumor necrosis factor-alpha, nuclear factor-kappa β, and caspase-3. These outcomes were confirmed by marked testicular architecture deterioration. Contrary to this, cilostazol, in a dose-dependent manner, showed potential protection against testicular toxicity, reversed the disrupted testicular function, and improved histological alterations through rebalancing of oxidative stress, inflammation, and apoptosis. In addition, cilostazol exerted a more pronounced protective effect in comparison to tadalafil and pentoxifylline. In conclusion, cilostazol ameliorates cisplatin-induced testicular impairment through alteration of oxidative stress, inflammation, and apoptotic pathways, offering a promising treatment for cisplatin-induced testicular damage
    corecore