126 research outputs found

    Déterminisme environnemental du sexe chez l'Anguille Européenne Anguilla anguilla.

    Get PDF
    Contrairement Ă  la majoritĂ© des mammifĂšres, la plupart des poissons ne possĂšdent pas de chromosomes sexuels hĂ©tĂ©romorphes (type XY/XX). Chez un grand nombre de poisson la labilitĂ© du sexe est extrĂȘmement prononcĂ©e. Cela se traduit par le fait que le dĂ©terminisme du sexe peut ĂȘtre sous l influence de variables environnementales. C est le cas chez l anguille oĂč la proportion de mĂąle augmente avec le nombre d individus prĂ©sents en un lieu donnĂ©. Cette thĂšse a pour but de mieux comprendre les facteurs qui rĂ©gissent la destinĂ© sexuelle des individus. Ainsi, les relations inter-individuelles et la croissance ont Ă©tĂ© Ă©tudiĂ©es afin d Ă©valuer leur possible rĂŽle dans le dĂ©terminisme du sexe. Les rĂ©sultats acquis au cours de cette thĂšse suggĂšrent que la densitĂ© per se ne serait pas le facteur primordial influençant le dĂ©terminisme du sexe, mais plutĂŽt l estimation faite par les individus de la qualitĂ© du milieu.Contrarily to most mammals, the majority of fish doesn t have heteromorphic sexual chromosomes (type XY/XX). In most fish, the gonad development is extremely labile and for some of them, the sex can be influenced/determined by environmental factors. This is observed in eel, where the proportion of males increases with the number of individuals at a given location. The goal of this thesis is to better understand processes that act upon sex determination in eel. Thus, inter-individual relationships as well as the growing potential of each fish were studied to evaluate their possible role in sex determination. The findings gathered throughout this thesis support the hypothesis of a metagametic (environmental) sex determination and also suggests that the estimation of the quality of the environment, made by juveniles eels, is one of the key factors influencing sex determination.PAU-BU Sciences (644452103) / SudocSudocFranceF

    Histology of Tritia mutabilis gonads: using reproductive biology to support sustainable fishery management

    Get PDF
    The mutable nassa, Tritia mutabilis, a marine gastropod that is widely exploited on the Adriatic coast is an important source of income for small-scale fishermen in the Mediterranean Sea, particularly in the Gulf of Lion. However, the lack of knowledge on the ecology and biology of this species limits our capacities to propose and produce an effective management plan. As a result, stocks are currently declining, especially in Italy. In order to optimize a management plan for this fishery, we designed a study to better characterize the reproductive biology of T. mutabilis, using gonad histology and performing a regular monitoring of population size frequency. The average shell height of individuals during the breeding period was 24 ± 2.7 mm for males and 30 ± 3.7 mm for females. The presence of small females (10 mm) and large males (32 mm) in the whole sample challenged previous assumptions regarding protandry (sex change from male to female). The size at first maturity was estimated for males and females at 17.5 mm and 24.4 mm shell height, respectively. In Italy, current management measures include a minimum conservation reference size of 20 mm in shell height. Therefore, it is likely that many individuals that did not reproduce are being caught, which could partly explain the decline observed, despite conservation measures introduced more than ten years ago. Overall, our study provides some baseline information to establish, in consultation with fishermen, management measures for this small-scale fishery in France

    A meta‐analysis of fish behavioural reaction to underwater human presence

    Get PDF
    WOS:000483722600001In an increasingly anthropic world, humans have profound impacts on the distribution and behaviour of marine fishes. The increased human presence has modified fishes' antipredator behavioural responses, and consequently flight decisions, as a function of their changed perceptions of risk. Understanding how fish react to human presence can help identify the most vulnerable functional groups/species and estimate impacts caused by human disturbance. Shoal and body size are known to influence fish flight initiation distance (FID; the distance between the predator and prey when the prey begins to escape); however, few studies attempt to test the moderators of these relationships. Here, we present a comprehensive meta-analysis evaluating FID of fish in response to human presence. Specifically, we investigated six candidate moderators that could influence the relationship between FID with shoal and body size. Our results showed that individual fish size was strongly and positively correlated with FID and the most important moderator that explained the variance in individual body size-FID relationship was shoaling behaviour. However, and somehow surprisingly, we detected no significant relationship between shoal size and FID. We discuss how these results can inform the development of fish conservation strategies and ultimately assist in the management of marine protected areas

    Nature-based tourism elicits a phenotypic shift in the coping abilities of fish

    Get PDF
    Nature-based tourism is gaining extensive popularity, increasing the intensity and frequency of human-wildlife contacts. As a consequence, behavioral and physiological alterations were observed in most exposed animals. However, while the majority of these studies investigated the effects of punctual exposure to tourists, the consequences of constant exposition to humans in the wild remains overlooked. This is an important gap considering the exponential interest for recreational outdoor activities. To infer long-term effects of intensive tourism, we capitalized on Odontostilbe pequira, a short-lived sedentary Tetra fish who spends its life close to humans, on which it feeds on dead skin. Hence, those fish are constantly exposed to tourists throughout their lifecycle. Here we provide an integrated picture of the whole phenomenon by investigating, for the first time, the expression of genes involved in stress response and neurogenesis, as well as behavioral and hormonal responses of animals consistently exposed to tourists. Gene expression of the mineralocorticoid (and cortisol) receptor (mr) and the neurogenic differentiation factor (NeuroD) were significantly higher in fish sampled in the touristic zone compared to those sampled in the control zone. Additionally, after a simulated stress in artificial and controlled conditions, those fish previously exposed to visitors produced more cortisol and presented increased behavioral signs of stress compared to their non-exposed conspecifics. Overall, nature-based tourism appeared to shift selection pressures, favoring a sensitive phenotype that does not thrive under natural conditions. The ecological implications of this change in coping style remain, nevertheless, an open question

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore