12 research outputs found

    Nano-inspired fluidic interactivity for boiling heat transfer: Impact and criteria

    Get PDF
    The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems

    Heat Transfer Characteristics of a Focused Surface Acoustic Wave (F-SAW) Device for Interfacial Droplet Jetting

    No full text
    In this study, we investigate the interfacial droplet jetting characteristics and thermal stability of a focused surface acoustic wave device (F-SAW). An F-SAW device capable of generating a 20 MHz surface acoustic wave by applying sufficient radio frequency power (2–19 W) on a 128°-rotated YX-cut piezoelectric lithium niobate substrate for interfacial droplet jetting is proposed. The interfacial droplet jetting characteristics were visualized by a shadowgraph method using a high-speed camera, and a heat transfer experiment was conducted using K-type thermocouples. The interfacial droplet jetting characteristics (jet angle and height) were analyzed for two different cases by applying a single interdigital transducer and two opposite interdigital transducers. Surface temperature variations were analyzed with radio frequency input power increases to evaluate the thermal stability of the F-SAW device in air and water environments. We demonstrate that the maximum temperature increase of the F-SAW device in the water was 1/20 of that in the air, owing to the very high convective heat transfer coefficient of the water, resulting in prevention of the performance degradation of the focused acoustic wave device

    Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications

    No full text
    The objective of this study is to design a broadband and wide-angle emitter based on metamaterials with a cut-off wavelength of 2.1 µm to improve the spectral efficiency of thermophotovoltaic emitters. To obtain broadband emission, we conducted the geometric parameter optimization of the number of stacked layers, the inner and outer radii of the nano-rings, and the thickness of the nano-rings. The numerical simulation results showed that the proposed emitter had an average emissivity of 0.97 within the targeted wavelength, which ranged from 0.2 µm to 2.1 µm. In addition, the presented multilayer nano-ring emitter obtained 79.6% spectral efficiency with an InGaAs band gap of 0.6 eV at 1400 K

    System for Fabrication of Large-Area Roll Molds by Step-and-Repeat Liquid Transfer Imprint Lithography

    No full text
    The effective production of nanopatterned films generally requires a nanopatterned roll mold with a large area. We report on a novel system to fabricate large-area roll molds by recombination of smaller patterned areas in a step-and-repeat imprint lithography process. The process is accomplished in a method similar to liquid transfer imprint lithography (LTIL). The stamp roll with a smaller area takes up the liquid resist by splitting from a donor substrate or a donor roll. The resist is then transferred from a stamp roll to an acceptor roll and stitched together in a longitudinal and, if necessary, in a circumferential direction. During transfer, the nanostructured resist is UV-exposed and crosslinked directly on the acceptor roll. The acceptor roll with the stitched and recombined stamp patterns is ready to be used as a large-area roll mold for roll-based imprinting. A system for this purpose was designed, and its operation was demonstrated taking the example of an acceptor roll of 1 m length and 250 mm diameter, which was covered by 56 patterned areas. Such a system represents an elegant and efficient tool to recombine small patterned areas directly on a large roll mold and opens the way for large-area roll-based processing

    Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors

    No full text
    We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction. Facile laser pyrolysis of black SU-8 provides a hierarchically macroporous, graphitic carbon structure with fewer defects (ID/IG = 0.19). The experimental conditions of CO2 direct laser writing were optimized to fabricate high-quality LPCs for MSC electrodes with low sheet resistance and good porosity. A typical MSC based on an LPC electrode showed a large areal capacitance of 1.26 mF cm−2 at a scan rate of 5 mV/s, outperforming most MSCs based on thermally pyrolyzed carbon. In addition, the results revealed that the high-resolution electrode pattern in the same footprint as that of the LPC-MSCs significantly affected the rate performance of the MSCs. Consequently, the proposed laser pyrolysis technique using black SU-8 provided simple and facile fabrication of porous, graphitic carbon electrodes for high-performance on-chip MSCs without high-temperature thermal pyrolysis

    Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors

    No full text
    We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction. Facile laser pyrolysis of black SU-8 provides a hierarchically macroporous, graphitic carbon structure with fewer defects (ID/IG = 0.19). The experimental conditions of CO2 direct laser writing were optimized to fabricate high-quality LPCs for MSC electrodes with low sheet resistance and good porosity. A typical MSC based on an LPC electrode showed a large areal capacitance of 1.26 mF cm−2 at a scan rate of 5 mV/s, outperforming most MSCs based on thermally pyrolyzed carbon. In addition, the results revealed that the high-resolution electrode pattern in the same footprint as that of the LPC-MSCs significantly affected the rate performance of the MSCs. Consequently, the proposed laser pyrolysis technique using black SU-8 provided simple and facile fabrication of porous, graphitic carbon electrodes for high-performance on-chip MSCs without high-temperature thermal pyrolysis

    Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays

    No full text
    Enhancing the critical heat flux (CHF), which is the capacity of heat dissipation, is important to secure high stability in two-phase cooling systems. Coolant supply to a dry hot spot is a major mechanism to prevent surface burn-out for enhancing the CHF. Here, we demonstrate a more ready supply of coolant using aligned silicon nanowires (A-SiNWs), with a high aspect ratio (>10) compared to that of conventional random silicon nanowires (R-SiNWs), which have a disordered arrangement, for additional CHF improvement. We propose the volumetric wicking rate, which represents the coolant supply properties by considering both the liquid supply velocity and the amount of coolant (i.e., wicking coefficient and wetted volume, respectively). Through experimental approaches, we confirm that the CHF is enhanced as the volumetric wicking rate is increased. In good agreement with the fabrication hypothesis, A-SiNWs demonstrate higher coolant supply abilities than those of R-SiNWs. The longest (7 μm) A-SiNWs have the highest volumetric wicking rate (25.11 × 10<sup>–3</sup> mm<sup>3</sup>/s) and increase the CHF to 245.6 W/cm<sup>2</sup>, which is the highest value obtained using nanowires among reported data (178 and 26% enhanced vs unmodulated plain surface and R-SiNWs, respectively). These well-aligned SiNWs can increase the CHF significantly with efficient coolant supply, and it can ensure high stability in extremely high thermal load systems. Moreover, our study provides nanoscale interfacial design strategies for further improvement of heat dissipation
    corecore