1,188 research outputs found
Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice – Effects of peripheral axotomy or hindpaw inflammation
Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)1–VGLUT3 transcripts in lumbar 4–5 (L4–5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4–5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III–IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III–IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.Fil: Malet, Mariana. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vieytes, C. A.. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Lundgren, K. H.. University of Cincinnati; Estados UnidosFil: Seal, R. P.. University of Pittsburgh; Estados UnidosFil: Tomasella, María Eugenia. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Seroogy, K. B.. University of Cincinnati; Estados UnidosFil: Hökfelt, T.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G. F.. University of Pittsburgh; Estados UnidosFil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh; Estados Unido
Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT2-positive perineuronal baskets
Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporter (VGLUT) types 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin gene-related peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets.Fil: Brumovsky, Pablo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Seroogy, Kim B.. University of Cincinnati; Estados UnidosFil: Lundgren, Kerstin H.. University of Cincinnati; Estados UnidosFil: Watanabe, Masahiko. Hokkaido University School of Medicine; JapónFil: Hökfelt, Tomas. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G.F.. Univeristy of Pittsburgh. School of Medicine; Estados Unido
Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse urinary bladder
Purpose: Vesicular glutamate transporters (VGLUTs), essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, the expression of VGLUTs in neurons innervating the urinary bladder has not yet been analyzed. Here, we study the presence of VGLUTs type-1, -2 and -3 (VGLUT1, VGLUT2 and VGLUT3, respectively) in mouse urinary bladder neurons. Materials and Methods: Expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide (CGRP) was analyzed by immunohistochemistry in retrogradely labeled primary afferent and autonomic neurons of BALB/C mice after injecting Fast Blue in the urinary bladder wall. To study VGLUT3, retrograde tracing of the urinary bladder was performed in transgenic mice where VGLUT3 is identified by detection of enhanced green fluorescent protein (EGFP). Results: Most urinary bladder DRG neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Coexpression with CGRP was only observed for VGLUT2. Occasional VGLUT2-immunoreactive (IR) neurons were seen in the major pelvic ganglion (MPG). Abundant VGLUT2-IR nerves were detected in the urinary bladder dome, trigone and also the urethra; VGLUT1-IR nerves were discretely present. Conclusions: We present novel data on the expression of VGLUTs in sensory and autonomic neurons innervating the mouse urinary bladder. The frequent association of VGLUT2 and CGRP in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the urinary bladder, such as discomfort and pain.Fil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas. Laboratorio de Investigaciones Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados UnidosFil: Seal, Rebecca P.. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados UnidosFil: Lundgren, Kerstin H.. University of Cincinnati. Department of Neurology; Estados UnidosFil: Seroogy, Kim B.. University of Cincinnati. Department of Neurology; Estados UnidosFil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; JapónFil: Gebhart, G. F.. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados Unido
The esophageal biopsy “pull” sign: a highly specific and treatment-responsive endoscopic finding in eosinophilic esophagitis (with video)
Esophageal biopsies in patients with eosinophilic esophagitis (EoE) can feel firm, with resistance appreciated when pulling the forceps to obtain the tissue sample. We aimed to assess the diagnostic utility of the esophageal biopsy pull sign, and determine its histologic associations and response to treatment
Russell Lecture: Dark Star Formation and Cooling Instability
Optically thin cooling gas at most temperatures above 30K will make
condensations by pressure pushing material into cool dense regions. This works
without gravity. Cooling condensations will flatten and become
planar/similarity solutions. Most star formation may start from cooling
condensations - with gravity only important in the later stages. The idea that
some of the dark matter could be pristine white dwarfs that condensed slowly on
to planetary sized seeds without firing nuclear reactions is found lacking.
However, recent observations indicate fifty times more halo white dwarfs than
have been previously acknowledged; enough to make the halo fraction observed as
MACHOS.
A cosmological census shows that only 1% of the mass of the Universe is of
known constitution.Comment: 32 Pages, Latex (uses aastex & natbib), 5 eps figures, submitted to
ApJ April 200
Accuracy of the Eosinophilic Esophagitis Endoscopic Reference Score in Diagnosis and Determining Response to Treatment
Little is known about the diagnostic utility of the eosinophilic esophagitis (EoE) endoscopic reference score (EREFS), and how scores change in response to treatment. We investigated the operating characteristics of the EREFS in diagnosis of EoE, how the score changes with treatment, and ways to optimize scoring system
Coarse-grained reconfigurable array architectures
Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code
Recommended from our members
Applying support-vector machine learning algorithms toward predicting host-guest interactions with cucurbit[7]uril.
Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.A.T. and M.P.S. thank The Winston Churchill Foundation of the United States. A.T. thanks the National Science Foundation graduate research fellowship, the MIT Chemical Engineering first year fellowship, and the Churchill College post-graduate grant program. G.W. thanks the Leverhulme Trust (project: ‘Natural material innovation for sustainable living’). V.K.R. thanks the Swiss National Science Foundation (P2EZP2_168784). O.A.S. acknowledges EPSRC Programme grant Nano-Optics to controlled Nano- Chemistry (NOtCH, EP/L027151/1) for funding
Morphometric studies of chloroquine induced autophagy in rat liver
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23667/1/0000635.pd
- …