Journal Name

Cite this: DOI: 00.0000/XXXXXXXXXX

Received Date
Accepted Date

DOI: 00.0000/XXXXXXXXXX

Applying Support-Vector Machine Learning Algo-
rithms towards Predicting Host-Guest Interactions
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Machine learning is a valuable tool in the development of chemical technologies but its applica-
tions into supramolecular chemistry have been limited. Here, the utility of kernel-based support
vector machine learning using density functional theory calculations as training data is evalu-
ated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril
(CBI[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then
used to predict the binding of drugs TAK-580 and Selumetinib. The algorithm did predict strong
binding for TAK-580 and poor binding for Selumetinib, and these results were experimentally vali-
dated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to Selumetinib,
suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or
CBI8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in
combination against gliomas. Finally, mass transfer simulations show CB[7] can independently
tune the release of TAK-580 without affecting Selumetinib. This work gives specific evidence that
a machine learning approach to recognition of small molecules by macrocycles has merit and
reinforces the view that machine learning may prove valuable in the development of drug delivery

systems and supramolecular chemistry more broadly.

Introduction

The applications of machine learning in biology and chemistry
have rapidly expanded in recent years due to the potential of
data science to improve small molecule drug discovery, identify
more efficient synthetic pathways, create proteins with greater
binding affinity to specific substrates, and other applications.1™*
One application that has not yet been explored is predicting the
molecular recognition of small molecules with macrocyclic hosts.

Cucurbiturils are a class of symmetric macrocycles that have
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applications within drug delivery, biosensing, catalysis, and en-
ergy.©7 These macrocycles have many advantages over their non-
symmetric counterparts such as cyclodextrins, including temper-
ature stability and robustness at acidic and basic pH values®,
such as those that occur naturally in physiology. The use of
cucurbiturils to change the release kinetics or pharmacokinetics
of drugs has been previously reported for chemotherapies such
as temozolomide.®? Cucurbituril acts as a competitive substrate
and binds to the active ingredient. This binding can reduce
the effective concentration and increase the half life of biologic
and hydrophobic small molecule drugs.? Predicting whether
a molecule will bind to any cucurbituril, in particular cucur-
bit[7]uril (CB[71]), a priori could be a valuable tool in developing
new chemical or material systems..

In this work, we show that support vector machines (SVMs) can
be used to provide utility towards predicting 1:1 complexation
of small organic molecules with CB[7]. Finding no comprehen-
sive, compiled body of data that could be used for regression, we
first created one using much of the published literature on small
molecules that bind to CB[7].© We also report the utility of this
regression in predicting the binding of two new small molecule
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Fig. 1 Prediction performance for optimal leave-one-out experiments.
The line of best fit based on predicted points is shown in black, and the
line representing perfect prediction is shown in red (score = 1.6266, R? =
0.3820).

drugs that have received promising results in the clinic and ver-
ify these predictions with experimental data. Finally, we provide
a qualitative example of the potential use of these predictions in
developing cocktail drug therapies against a pediatric low grade
glioma cell model.

Methods and Model

A principle challenge for any machine learning application is
in building a sufficiently large training data set that approxi-
mates the entire problem domain with as little bias as possible.'-'L_z*|
To start such an effort, we performed density functional theory
(DFT) simulations on 146 molecules (Fig. S1-10, corresponding
to nomenclature in Ref. 6). These molecules had 194 total equilib-
rium binding coefficients to CB[7]; some molecules had multiple
values because they were tested at multiple different experimen-
tal conditions (Table Sl). Seeing a lack of negative con-
trols in the literatureEl, we also synthesised and/or tested three
molecules that could not bind to CB[7] and set these undetectable
binding events to output values of 0 to not skew the algorithm
with extreme values (Fig. S11).

Critical to the binding affinity of molecules with CB[7] are
the size, aromaticity, and charge of the guest. Other, non-
intrinsic parameters such as solution temperature, pH, salt and/or
buffer concentration may also effect the equilibrium binding con-
stant. 915 we sought to capture both intrinsic and environmental
properties of the binding event as potential predictive features
(Fig. S12). Many reports in the literature fail to disclose critical
environmental details such as temperature or pH, which limited
our ability to make a cohesive body of data covering the envi-
ronmental properties. The simulated body of data were unified
as we homogenously ran DFT simulations and extracted identical
parameters from the optimised results (Table S1).

With 194 molecular samples consisting of 17 experimental and
structural features, the constructed data set is small sample-wise
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with a relatively high-dimensional feature space. Without heav-
ily sub-setting the feature space and losing potentially integral
feature-interaction information, training a model to find a sub-
space parameterising the underlying binding dynamics is diffi-
cult without strong inductive biases provided a priori. We in-
stead looked to kernel methods to provide a more sample-efficient
learning paradigm that can still capture the dynamics of the fea-
ture space through the lens of properly-defined sample similarity.
A mathematical background for kernel methods is provided (ESI).

Kernel featurisation provides a non-linear representation of the
samples within some inner-product space. Support Vector Ma-
chines (SVMs) are a family of models that can capitalize on this
expressive kernel structure by representing examples as points in
this space and determining an optimal but well-behaved mapping
that best describes the differences between individual points. Al-
though originally designed for classification tasks, SVMs have a
natural extension to regression. Given the mathematical frame-
work developed (ESI), we explored the capacity of SVMs to pre-
dict the equilibrium binding constants of published molecules.®
We performed a search over features to determine the best-
performing subset of the feature space in coordination with grid
search over hyperparameters within the model pipeline, namely
v,€,C,|0|,0, and all permutations of addition or multiplication of
each kernelised feature. The optimal hyperparameters (ESI) were
chosen based on 5-fold cross-validation with respect to mean ab-
solute error.

The environmental data were largely incomplete due to the fact
that many experiments in the literature do not report at least one
and often several of the environmental parameters such as tem-
perature or pH. For samples missing this information, we assumed
temperatures of 298.15 K, and pH values of 7. We also set other
values, such as salt concentration, to zero. These assumptions re-
sulted in an environmental feature set that was sparse and largely
uniform (Fig. [3] supplementary data set). Viewing environmen-
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Fig. 2 Normalised confusion matrix for the optimal SVM model trained
as a classifier.
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Fig. 3 Prediction performance for leave-one-out experiments for environ-
mental parameters only. The line of best fit based on predicted points is
shown in black, and the line representing perfect prediction is shown in
red (score = 2.1938, R? = -0.0665).

tal factors as a single feature vector, we also explored how the
addition of environmental information affected prediction perfor-
mance.

Results and Discussion

A leave-one-out analysis was performed to subset the model fea-
tures and choose the optimal model. Each model was trained on
the entire training set less one sample, for all possible held out
samples. The log of the equilibrium constant, log K, was then pre-
dicted by the model for each held-out sample. The mean absolute
error of all held-out runs was calculated across every combina-
tion of the features listed in Table S1, and the subset with the
lowest error score was chosen to go forward (Fig. S18, S19), with
combinations (1), (3), (4), and (6) (see Table S1). Plots for the
combinations of these parameters are shown in Fig. S13-16). For
a predicted set of n members, the score was defined as the mean
absolute deviation:

1 n
score = n Z |lOgKi.actual - logKi,predicted|~
i=1

We chose mean absolute error as the scoring function due to both
its intuitive simplicity and, because it equally scales the residuals,
its consistent comparison across any magnitude split of left out
data. We found other error measures behave similarly to this
score.

Because the available environmental data lack diversity and are
unnaturally uniform across samples, their usage as an additional
feature often masked the underlying predictive capacity of the
structural features. This process of feature reduction resulted in
an optimal model consisting of 4 features derived from DFT cal-
culations (1), (3), (4), and (6) only (Fig. S18). These results are
intuitive: both the size and electron distribution of small molecule
organics are key in determining binding to cucurbit[7]uril.® En-
vironmental parameters including salt concentration are known

to affect the binding of some molecules.” However, the extent
of changes is less than the error of our model, so environmental
parameters were not considered going forward.

Optimised orientation was a large driver of model accuracy
in predicting logK (ESI). In pursuit of better intuition regard-
ing model performance, the equivalent SVM classifier was trained
using the same process as above. The confusion matrix in Fig-
ure S19 is largely diagonal, with a bias towards over-predicting
samples with a low value for log K. Also of interest was the extent
to which the preprocessing methods provided separation between
samples. Figure S17 shows non-linear 2D projections of the com-
bined kernels as well as the pre-kernelised and post-kernelised
features for the optimised DFT orientation.® It is evident from
these plots that the featurisation process creates useful separa-
tion between high and low values of logK.

We next sought to challenge the model and identify its lim-
its. We first removed any duplicate molecules at different con-
ditions and set the true logK as the average of all the reported
values. For example, methyl viologen was reported 14 times at
different parameters such as temperature or salt concentration,
and so instead of having methyl viologen appear 14 times, it ap-
peared once (ESI). Interestingly, and perhaps expectedly, the opti-
mal model in this duplicate-free data set remained the same. The
duplicate-free data set was chosen for subsequent analysis and
the performance, confusion matrix, and corresponding receiver
operating characteristic / area under the curve (ROC-AUC) plot
are reported (Fig. S17). These classification results demon-
strate the nature of the model’s performance. Error accumulates
primarily at either extemum of the logK distribution, but large er-
rors are uncommon and performance in the denser parts of the
training distribution is higher. Next, we removed classes of fam-
ilies and tested the model’s ability to predict any one member of
that family (Table 1, Table S2, Fig[)). Given the limited size of the
data set, we expect this algorithm to be useful in identifying the
binding of molecules which a supramolecular chemist might ex-
pect to bind to cucurbiturils a priori. For example, molecules with
extended aromaticity are generally hypothesised to have some in-
teractions with cucurbiturils.! This analysis shows that in order
to capture binding of molecules such as imidazolium derivatives
and adamantyl compounds, a data set containing these molecules
is required. Imidazolium derivatives performed the best out of
all the groups considered when their family was included in the
training, and their error increases more than 5 times when left

Table 1 Summary of different subclasses of molecules identified in the
data set that were used to challenge the model.

Family of molecules Unique entries
small arylamines 4
viologen derivatives 6
methylene blue derivatives 9
perfluorinated compounds 13
amino acids 10
imidazolium derivatives 8
adamantyl compounds 12
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Fig. 4 The score describes the mean difference between predicted logK and actual logK when each class of families is kept or left out. Dashed red

line is the average score of the model utilising all the data.

out, suggesting the algorithm is particularly sensitive to train-
ing on these types of molecules. Small arylamines and viologen
derivatives performed better than the average data set regardless
if the family was kept in or out, suggesting analysis of these kinds
of molecules is robust and the physics of their binding is well-
captured with the remaining data relative to the other families.

We next performed classical machine learning controls.1Z We
first tested the performance of environmental parameters alone,
which contain no chemical information about the guest. We
found they had poor predictive capabilities (Fig. [3). We also
tested whether we could predict the logK by counting the num-
ber of carbons in each molecule (Fig. S21). Similarly, we found
poor predictive capabilities with this approach. Both models per-
formed worse than models which considered 3D structural data.
One potential bias in the data that could be leading to the differ-
ence in the controls’ performance is the slight negative relation-
ship of molecular weights of guests (Fig. S22) to logK. Finally,
we generated a random data set of identical dimension with the
same logK outputs and found this had poor predictive capabilities
(Fig. S23). We also randomly reassigned logK values to differ-
ent input data and found this reshuffling had, as expected, poor
predictive capabilities (Fig. S24).

We then compared whether there were similarities among the
top 10 performing models based on score (of the 127 models con-
sidered when no environmental parameters are included). The
10 best models all utilised the electric orientation (4) and electric
field gradient (6). Furthermore, all the top 10 performing models
also used either the optimised orientation (1), SCF density (3), or
both. No other parameters were used in 50% or more of the top
10 models (see attached data set). This suggests spatial and elec-
tronic information about each molecule improve the predictive
capabilities of the algorithm. Five of these top 10 also had among
the highest 10 R2 values, including the top model based on score.
All of the top 10 models had among the top 25 R? values.
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Within the domain of utility, our results suggest this model
may has some predictive ability towards binding constants of
molecules we might suspect a priori have binding to cucurbi-
turils. We next applied it to predict whether binding can occur
between CB[7] and two small molecule organics recently iden-
tified as potentially promising drugs against pediatric low-grade
gliomas: a type II RAF inhibitor TAK-580 (formerly MLN2480; re-
ferred to here as RAF), and a MEK inhibitor Selumetinib (also
called AZD6244; referred to here as MEK).1819 Sun and col-
leagues recently reported RAF as a more promising therapy than
type I RAF inhibitors due to its ability to bind to both fused and
truncated v600.18 Banerjee and colleagues also recently reported
a promising phase I clinical trial of MEK in children with low-
grade gliomas.!? We performed DFT geometry optimisations on
these two molecules and applied the SVM model. It was pre-
dicted that RAF would be a good guest to CB[7] with a logK of
4.61, while MEK would have very poor binding with a logK of
1.18 (Fig. [5IC). Similar values were obtained if duplicate inputs
were considered (Fig. S20). Synergistic drug cocktails have more
potent responses than the sum of their individual components.22
A key challenge in developing drug cocktails is in their delivery
because drugs have different therapeutic windows requiring dif-
ferent release kinetics.222/ The ability to independently modu-
late release kinetics is an invaluable tool in the development of
combination drugs. Different binding constants with macrocycles
such as CB[7] is one promising approach to independently mod-
ulate these kinetics. This prediction that two promising drugs
(Fig. S25) against pediatric low grade gliomas is a potentially
promising ‘hit’ in combination drug delivery.



We experimentally validated whether these predictions on the
strong and poor CB[7] binding of RAF and MEK were accu-
rate. Upon addition of CB[7] to an aqueous solution of RAF
(1:1 molar ratio), the drug’s aromatic 'H NMR peaks remained
sharp and well resolved. The proton signals of CB[7] split
into two sets of equivalent peaks (Fig. [5/A). These two observa-
tions strongly suggest that RAF and CB[7] bind favorably and
statically. 15 [sothermal titration calorimetry (ITC) revealed that
Kepjy) = 3.5%x10° M'! (Fig. $29). We also sought to identify pre-
cisely where RAF was binding with CB[7]. No information on
'H or 3C NMR peak assignments could be found on RAF from
the manufacturer or in the literature, and so further character-
isations were carried out utilising 1D and 2D NMR techniques
(ESI Section S.3: Binding Analyses via NMR). Our results show
that CB[7] binds statically at the trifluoromethyl-substituted ring
in a 1:1 fashion (Fig. S29). Surprised by this result, we sought
to understand why CB[7] preferentially bound to the bulkier
trifluoromethyl-substituted ring if there was an alternative pyrim-
idine with a positively charged amine.® Deuterated hydrochloric
acid solution (0.1 M) was titrated into a solution of RAF alone
(Fig. S30). The aromatic peak meta to the primary amine shifted
after a reduction to pH < 2. This suggests that the primary amine
is, in fact, uncharged, which may be a reason why CB[7] does not
bind at the pyrimidine ring. We then investigated whether RAF
could bind to CB[8] (Fig. S31). The aromatic peaks of the drug
do not remain well resolved as in the case with CB[7], but rather
they broaden and disappear. This suggests that RAF does inter-
act with CB[8] with low affinity and in a highly dynamic manner.
Thus, CB[8] is not a good carrier for RAF, while CB[7] is an ex-
cellent one.

We then validated whether the SVM prediction for MEK was
correct. MEK was added to an aqueous solution of excess CB[7]
to determine whether any interactions were occurring (Fig. S32).
In depth analysis is described in the ESI. These data demonstrated
that the drug does not bind to CB[7], confirming that the SVM
predicted poor binding of MEK with CB[7]. We then screened
its binding to CB[8] (Fig. S33). The shift and retention of sharp
peaks in the 'H NMR spectra suggested that the MEK inhibitor
binds more strongly and statically to CB[8] than RAF. The down-
field shifts of protons ¢, g, and h suggested that the extended
imidazole ring is located near but outside the CB[8] cavity. The
upfield shift of protons a and b suggested that the ethylene glycol
unit is inside the CB[8] cavity. The minimal changes in protons
d, e, and f were consistent with the hypothesis that the bromo-
substituted ring was not inside or near the CB[8] cavity. It is
well known that CB[8] can thread poly(ethylene glycol) chains.©
The thermodynamically favorable interactions between ethylene
glycol repeat units and CB[8] may explain why CB[8] preferen-
tially binds to the ethylene glycol unit of MEK. After addition
of CB[8] in ratios greater than 1:1, little change occurs in the
spectra, which suggested MEK and CB[8] bind in a 1:1 fashion.
These data show that two different drugs with different thera-
peutic windows bind to different CB macrocycles. MEK shows
no binding with CB[7], yet RAF and CB[7] bind strongly in a
1:1 fashion. Conversely, MEK binds to CB[8] more statically than
RAF. Combining these two drugs into one therapy could give rise
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Fig. 5 (A) '"H NMR spectra of RAF alone (bottom) in D,O with 2%
DMSO-46, and with CB[7] in a 1:1 molar ratio (top) in the same solu-
tion. Red text and dashed lines indicate peaks that did not shift. Blue text
corresponds to peaks that did shift. (B) lllustration showing geometrically
accurate binding of RAF with CBJ[7]. (C) Predicted and experimental logK
of RAF and MEK.

to a paradigm that provides a unique opportunity to selectively
tune the release or residence time of one drug independently of
the other by simply tuning the concentrations of CB[7] and CB[8]
in the system.

We next sought to provide a qualitative example of the po-
tency of these drugs, and why modulating drugs to have differ-
ent release kinetics is an important capability in the development
of combination therapies. RAF/MEK combination therapies have
been found to be efficacious against other malignancies.2324 In
this work we explore whether such a combination is potent in a
pediatric glioma model. We screened for combinations of RAF
and MEK against a v600e mutant and identified a synergistic
effect at 10> nM concentration of both RAF and MEK together
(Fig. S34). This result suggests that by co-delivering RAF and
MEK, the total drug concentration required can be reduced. Fur-
ther optimisations may yield further reductions in required con-
centrations.

Finally, we utilised a simple mass transport model to showcase
how with these binding affinities, CB[7] can be used to indepen-
dently tune the release kinetics of one drug without changing
the kinetics of the other (Fig. @ We modeled a spherical, non-
degradable hydrogel depot 0.375 mL in volume%? with CB[7]
bound within the matrix and 100 uM loaded drug concentrations
(Gyorar). Our lab has recently shown that divalent crosslinkers
can form hydrogels loaded with CBs,28%28 however the gel mod-
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Fig. 6 (A-B) Simulated time-resolved release kinetics of RAF and MEK
with different concentrations of CB[7]. The RAF or MEK were free guests
in the hydrogel depot, whereas the CB[7] was tethered to the network and
did not diffuse out with the guest. Pseudy-steady state and fast equilib-
rium assumptions reduced the differential equation into a non-linear initial
value problem which was solved numerically. Figure shows five day re-
sult of (A) RAF and (B) MEK. MEK shows no change in concentrations
as it does not bind to CB[7] (note: all plots are overlapping in panel B).

eled here differs from these previous reports as the CB does not
participate in the non-covalent network (ESI). This model leads
to an initial value problem, which is dictated by the differential
equation (full derivation in ESI):

d(Gtolal) _ _ADCSWf

dt VR

Csurf = f(K7 GtotabCB[ﬂtoml)

where hydrogel radius (R) and volume (V), surface area (A), and
species diffusivity (D) are constants. Experimentally derived asso-
ciation equilibrium constants (K) were used in the model for RAF
(binding) and MEK (no binding). cg,s is the drug concentration
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at the hydrogel boundary. The concentration of loaded CB[7] was
varied. Across different concentrations of CB[7], the release ki-
netics of RAF changed several orders of magnitude in timescale
(Fig. @A, S35). By contrast, changing the concentration of CB[7]
did not change the release kinetics of MEK (Fig. @3). One limita-
tion of this approach is that the fast equilibrium assumption fails
in the limit of no CB[7] or no binding to CB[7]. Given that the
parameter of interest is total drug released (Fig. |§|) and not the
spatial distribution of drug within the hydrogel depot, and given
a lack of kinetic information, this assumption was tolerated in this
limit. Determining the changes in release profile observed when
the fast equilibrium assumption is relaxed is the basis for future
work. Nonetheless, this numerical result shows that preferential
binding is a valuable tool that can be exploited to tune kinetics of
drugs independently of one another over time scales of interest
for local drug delivery.21

Conclusion

In this work, DFT calculations were used as training data to pre-
dict equilibrium binding constants of small molecule organics to
CB[7] with machine learning. A library was developed and used
to identify which parameters provide predictive capability. We
find that publicly available data creates a set likely too small for
robust, accurate prediction of binding, though utilising SVMs may
confer some predictive ability. This algorithm was used to predict
the binding of two promising small molecule drugs in the clinic
against pediatric low grade glioma. The algorithm predicted
strong binding for the type II RAF inhibitor, and poor binding
for the MEK inhibitor, which was experimentally validated. It was
also discovered that CB[7] is partial to binding the RAF inhibitor,
and CB[8] is partial to binding the MEK inhibitor, suggesting an
opportunity for tunable release kinetics by introducing different
concentrations of CB[7] or CB[8] into the system, perhaps in a
hydrogel depot. Finally, we qualitatively demonstrated that these
two drugs have different therapeutic windows and may have util-
ity in concert against low grade gliomas. Machine learning may
prove valuable in the development of drug delivery materials for
combination therapies in the future, as well as non-biomedical ap-
plications that require predicting the binding of small molecules
to macrocycles. As data sets continue to be generated and refined,
the opportunities of data science in supramolecular chemistry will
continue to grow.
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