13 research outputs found

    Peat Moss–Like Vegetative Remains from Ordovician Carbonates

    Get PDF
    Premise of research. Climatically favorable conditions correspond with fossil evidence for dramatic Ordovician marine biodiversification, but coeval terrestrial biodiversity is less well understood. Although diverse Middle and Late Ordovician microfossils are interpreted as reproductive remains of early bryophyte-like land plants (consistent with molecular data indicating pre-Ordovician embryophyte origin), the vegetative structure of Ordovician plants remains mysterious, as do relationships to modern groups. Because distinctive fungal microfossils indicating land plant presence were previously reported from Ordovician carbonate deposits in Wisconsin, we examined another nearby outcrop for additional evidence of terrestrial biodiversification. Methodology. Replicate collections were made from well-understood 455–454 Ma Platteville Formation carbonates of relatively low porosity and hydraulic conductivity. We employed measures to avoid contamination, and organic remains extracted by acid maceration were characterized by light and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Pivotal results. Multicellular organic fragments displayed distinctive cellular features shared with modern vegetative peat mosses but differed from modern materials, e.g., fossil presence of mineral coatings, absence of epibionts. Biometric features of mosslike microfossils isolated from carbonates collected and macerated 12 yr apart by separate investigators did not differ. Putative peat moss remains occurred with foraminifera similar in frequency and thermal maturity to types previously described from the same formation. No diatoms, pollen, or other indicators of post-Ordovician environments were observed. Conclusions. The peat moss–like fragments described here are the oldest-known vegetative remains of land plants and the oldest fossils having distinctive features linking them to a modern plant group. These findings are consistent with peat moss recalcitrance properties that foster fossilization and molecular evidence that the peat moss lineage is 460–607 Ma of age. The new findings suggest that moss-dominated peatlands—recognized for globally significant roles in modern terrestrial biodiversity and C and N cycling—were present hundreds of millions of years earlier than previously thought

    The supernatural characters and powers of sacred trees in the Holy Land

    Get PDF
    This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual

    Body size, longevity, and growth rate in Lake Pannon melanopsid gastropods and their predecessors

    No full text
    We investigate potential microevolutionary mechanisms of phenotypic change in a lineage of brackish-water gastropods from Lake Pannon. The lineage exhibits a threefold increase in body size and a pronounced increase in shell shouldering over a roughly 2.5-Myr interval. We use the stable oxygen isotope profiles of 13 shells to address the question of whether large size is due to more rapid growth or to greater longevity. Results indicate that larger individuals have significantly greater longevity. Growth rates in large snails are comparable to those of their smaller-bodied ancestors. Potentially relevant selective advantages of large size include escape from predators, avoidance of resource competition, and increased fecundity. We argue that the first two advantages may have accrued to larger individuals but are not likely to have driven the trend because selection for them would favor more rapid growth rates. Fecundity selection, on the other hand, is readily envisioned in a stable, predictable environment in which the need for early reproduction is relaxed. The evolution of large body size in Lake Pannon molluscs may be comparable to evolution on many islands, where reduced pressure from competition and predation lead to characteristic changes in body size

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore