5,117 research outputs found

    The Gap-Tooth Method in Particle Simulations

    Full text link
    We explore the gap-tooth method for multiscale modeling of systems represented by microscopic physics-based simulators, when coarse-grained evolution equations are not available in closed form. A biased random walk particle simulation, motivated by the viscous Burgers equation, serves as an example. We construct macro-to-micro (lifting) and micro-to-macro (restriction) operators, and drive the coarse time-evolution by particle simulations in appropriately coupled microdomains (teeth) separated by large spatial gaps. A macroscopically interpolative mechanism for communication between the teeth at the particle level is introduced. The results demonstrate the feasibility of a closure-on-demand approach to solving hydrodynamics problems

    Numerical integration of ordinary differential equations of various orders

    Get PDF
    Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced

    Multiscale analysis of re-entrant production lines: An equation-free approach

    Full text link
    The computer-assisted modeling of re-entrant production lines, and, in particular, simulation scalability, is attracting a lot of attention due to the importance of such lines in semiconductor manufacturing. Re-entrant flows lead to competition for processing capacity among the items produced, which significantly impacts their throughput time (TPT). Such production models naturally exhibit two time scales: a short one, characteristic of single items processed through individual machines, and a longer one, characteristic of the response time of the entire factory. Coarse-grained partial differential equations for the spatio-temporal evolution of a "phase density" were obtained through a kinetic theory approach in Armbruster et al. [2]. We take advantage of the time scale separation to directly solve such coarse-grained equations, even when we cannot derive them explicitly, through an equation-free computational approach. Short bursts of appropriately initialized stochastic fine-scale simulation are used to perform coarse projective integration on the phase density. The key step in this process is lifting: the construction of fine-scale, discrete realizations consistent with a given coarse-grained phase density field. We achieve this through computational evaluation of conditional distributions of a "phase velocity" at the limit of large item influxes.Comment: 14 pages, 17 figure

    Projective and Coarse Projective Integration for Problems with Continuous Symmetries

    Full text link
    Temporal integration of equations possessing continuous symmetries (e.g. systems with translational invariance associated with traveling solutions and scale invariance associated with self-similar solutions) in a ``co-evolving'' frame (i.e. a frame which is co-traveling, co-collapsing or co-exploding with the evolving solution) leads to improved accuracy because of the smaller time derivative in the new spatial frame. The slower time behavior permits the use of {\it projective} and {\it coarse projective} integration with longer projective steps in the computation of the time evolution of partial differential equations and multiscale systems, respectively. These methods are also demonstrated to be effective for systems which only approximately or asymptotically possess continuous symmetries. The ideas of projective integration in a co-evolving frame are illustrated on the one-dimensional, translationally invariant Nagumo partial differential equation (PDE). A corresponding kinetic Monte Carlo model, motivated from the Nagumo kinetics, is used to illustrate the coarse-grained method. A simple, one-dimensional diffusion problem is used to illustrate the scale invariant case. The efficiency of projective integration in the co-evolving frame for both the macroscopic diffusion PDE and for a random-walker particle based model is again demonstrated

    Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems

    Full text link
    In "equation-free" multiscale computation a dynamic model is given at a fine, microscopic level; yet we believe that its coarse-grained, macroscopic dynamics can be described by closed equations involving only coarse variables. These variables are typically various low-order moments of the distributions evolved through the microscopic model. We consider the problem of integrating these unavailable equations by acting directly on kinetic Monte Carlo microscopic simulators, thus circumventing their derivation in closed form. In particular, we use projective multi-step integration to solve the coarse initial value problem forward in time as well as backward in time (under certain conditions). Macroscopic trajectories are thus traced back to unstable, source-type, and even sometimes saddle-like stationary points, even though the microscopic simulator only evolves forward in time. We also demonstrate the use of such projective integrators in a shooting boundary value problem formulation for the computation of "coarse limit cycles" of the macroscopic behavior, and the approximation of their stability through estimates of the leading "coarse Floquet multipliers".Comment: Submitted to Journal of Computational Physic

    An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal

    Full text link
    The movement of many organisms can be described as a random walk at either or both the individual and population level. The rules for this random walk are based on complex biological processes and it may be difficult to develop a tractable, quantitatively-accurate, individual-level model. However, important problems in areas ranging from ecology to medicine involve large collections of individuals, and a further intellectual challenge is to model population-level behavior based on a detailed individual-level model. Because of the large number of interacting individuals and because the individual-level model is complex, classical direct Monte Carlo simulations can be very slow, and often of little practical use. In this case, an equation-free approach may provide effective methods for the analysis and simulation of individual-based models. In this paper we analyze equation-free coarse projective integration. For analytical purposes, we start with known partial differential equations describing biological random walks and we study the projective integration of these equations. In particular, we illustrate how to accelerate explicit numerical methods for solving these equations. Then we present illustrative kinetic Monte Carlo simulations of these random walks and show a decrease in computational time by as much as a factor of a thousand can be obtained by exploiting the ideas developed by analysis of the closed form PDEs. The illustrative biological example here is chemotaxis, but it could be any random walker which biases its movement in response to environmental cues.Comment: 30 pages, submitted to Physica

    Using a group decision support system to make investment prioritisation decisions

    Get PDF
    corecore