2,605 research outputs found

    Activity and social interactions in a wideranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animalborne video collars

    Get PDF
    Observing animals directly in the field provides the most accurate understanding of animal behaviour and resource selection. However, making prolonged observation of undisturbed animals is difficult or impossible for many species. To overcome this problem for the Tasmanian devil (Sarcophilus harrisii), a cryptic and nocturnal carnivore, we developed animal-borne video collars to investigate activity patterns, foraging behaviour and social interactions. We collected 173 hours of footage from 13 individual devils between 2013 and 2017. Devils were active mostly at night, and resting was the most common behaviour in all diel periods. Devils spent more time scavenging than hunting and exhibited opportunistic and flexible foraging behaviours. Scavenging occurred mostly in natural vegetation but also in anthropogenic vegetation and linear features (roads and fence lines). Scavenging frequency was inversely incremental with size e.g. small carcasses were scavenged most frequently. Agonistic interactions with conspecifics occurred most often when devils were traveling but also occurred over carcasses or dens. Interactions generally involved vocalisations and brief chases without physical contact. Our results highlight the importance of devils as a scavenger in the Tasmanian ecosystem, not just of large carcasses for which devils are well known but in cleaning up small items of carrion in the bush. Our results also show the complex nature of intraspecific interactions, revealing greater detail on the context in which interactions occur. In addition, this study demonstrates the benefits of using animal-borne imaging in quantifying behaviour of elusive, nocturnal carnivores not previously seen using conventional field methods

    A generalization of the q-Saalschutz sum and the Burge transform

    Full text link
    A generalization of the q-(Pfaff)-Saalschutz summation formula is proved. This implies a generalization of the Burge transform, resulting in an additional dimension of the ``Burge tree''. Limiting cases of our summation formula imply the (higher-level) Bailey lemma, provide a new decomposition of the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe

    Evolutionary dynamic optimisation of airport security lane schedules

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Reducing costs whilst maintaining passenger satisfaction is an important problem for airports. One area this can be applied is the security lane checks at the airport. However, reducing costs through reducing lane openings typically increases queue length and hence passenger dissatisfaction. This paper demonstrates that evolutionary methods can be used to optimise airport security lane schedules such that passenger dissatisfaction and staffing costs can be minimised. However, it is shown that these schedules typically over-fit the forecasts of passenger arrivals at security such that in actuality significant passenger delays can occur with deviations from the forecast. Consequently, this paper further demonstrates that dynamic evolutionary re-optimisation of these schedules can significantly mitigate this over-fitting problem with much reduced passenger delays

    Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions

    Get PDF
    The effect of interfacial slip on steady-state and time-periodic flows of monatomic liquids is investigated using non-equilibrium molecular dynamics simulations. The fluid phase is confined between atomically smooth rigid walls, and the fluid flows are induced by moving one of the walls. In steady shear flows, the slip length increases almost linearly with shear rate. We found that the velocity profiles in oscillatory flows are well described by the Stokes flow solution with the slip length that depends on the local shear rate. Interestingly, the rate dependence of the slip length obtained in steady shear flows is recovered when the slip length in oscillatory flows is plotted as a function of the local shear rate magnitude. For both types of flows, the friction coefficient at the liquid-solid interface correlates well with the structure of the first fluid layer near the solid wall.Comment: 31 pages, 11 figure

    Theory of Star Formation

    Full text link
    We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission statement adde

    Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field

    Get PDF
    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed

    Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions

    Get PDF
    Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition

    Robustness and evolutionary dynamic optimisation of airport security schedules

    Get PDF
    Reducing security lane operations whilst minimising passenger waiting times in unforseen circumstances is important for airports. Evolutionary methods can design optimised schedules but these tend to over-fit passenger arrival forecasts resulting in lengthy waiting times for unforeseen events. Dynamic re-optimisation can mitigate for this issue but security lane schedules are an example of a constrained problem due to the human element preventing major modifications. This paper postulates that for dynamic re-optimisation to be more effective in constrained circumstances consideration of schedule robustness is required. To reduce over-fitting a simple methodology for evolving more robust schedules is investigated. Random delays are introduced into forecasts of passenger arrivals to better reflect actuality and a range of these randomly perturbed forecasts are used to evaluate schedules. These steps reduced passenger waiting times for actual events for both static and dynamic policies with minimal increases in security operations

    Stress induced polarization of immune-neuroendocrine phenotypes in Gallus gallus

    Get PDF
    Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-γ and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.Fil: Nazar, Franco Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Estevez, Inma. Centro de Investigación. Neiker - Tecnalia; EspañaFil: Correa, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
    corecore