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Abstract. Reducing security lane operations whilst minimising passen-
ger waiting times in unforseen circumstances is important for airports.
Evolutionary methods can design optimised schedules but these tend to
over-fit passenger arrival forecasts resulting in lengthy waiting times for
unforeseen events. Dynamic re-optimisation can mitigate for this issue
but security lane schedules are an example of a constrained problem
due to the human element preventing major modifications. This paper
postulates that for dynamic re-optimisation to be more effective in con-
strained circumstances consideration of schedule robustness is required.
To reduce over-fitting a simple methodology for evolving more robust
schedules is investigated. Random delays are introduced into forecasts
of passenger arrivals to better reflect actuality and a range of these ran-
domly perturbed forecasts are used to evaluate schedules. These steps
reduced passenger waiting times for actual events for both static and
dynamic policies with minimal increases in security operations.

Keywords: airport security lane scheduling, robust dynamic optimisa-
tion, evolutionary algorithm

1 Introduction

Airports face pressures to reduce their operational costs whilst improving pas-
senger experiences, a conflicting objective. A key operational cost is the manning
of security lanes but reducing security lane operations has the net effect of in-
creasing passenger waiting times and thereby dissatisfaction. Consequently, it is
a problem area suited to optimisation to derive security lane schedules that re-
duce both waiting times and lane operations. Evolutionary methods have been
frequently used to solve scheduling problems such as this. However, in uncer-
tain environments such as passenger arrivals, there is a tendency for optimised
schedules to over-fit predictions of future events with poor performance for un-
foreseen events. Real-time schedule modification can mitigate for this issue and
the authors of this work successfully demonstrated evolutionary dynamic re-
optimisation methods to improve security lane schedules at airports [3].
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However, within a constrained environment such as staff scheduling there
are limitations to the modification of schedules restricting the effectiveness of
dynamic approaches. Therefore, it is postulated that the robustness of origi-
nal schedules must be of consideration for constrained environments to reduce
over-fitting and improve the performance of both static and dynamic schedul-
ing policies. To raise the robustness of security lane schedules two steps will be
considered. Firstly, modifying the supplied forecasts of passenger arrivals by in-
creasing arrival variability to better reflect actual events. The second step then
uses this methodology generate a range of varying forecast scenarios which can-
didate schedules can be tested upon to measure their robustness.

The paper is laid out as follows: Section 2 will present the security lane
optimisaton problem and briefly describe the evolutionary design of security lane
schedules for both static and dynamic policies. Section 3 will present methods
to improve the robustness of schedules and contrast the performance of derived
schedules with non-robust methods for unforeseen actual events. Finally, Section
4 will profile related works and Section 5 will draw conclusions and present
options for future work.

2 Dynamic Optimisation of Security Lane Schedules

2.1 The Security Lane Optimisation Problem

Passengers travelling by air are required to pass through stringent security checks
such as hand baggage searches and passing through metal detectors etc. with a
number of available security lanes for processing passengers. Security checks are
staff intensive and cannot be compromised as maintaining security is paramount.
One aspect of security that is open to optimisation is the schedules of opening
these security lanes. Clearly, minimising passenger waiting times at security re-
duces passenger dissatisfaction. Thus, opening all security lanes will achieve this
but to the expense of the airport but alternatively, closing lanes will increase
passenger waiting times and hence increase dissatisfaction. Therefore, it can
be considered that the problem is multi-objective in nature, minimising wait-
ing times and minimising security operations are mutually exclusive objectives.
However, passenger demand will ebb and flow and therefore the problem be-
comes the design of a schedule that ensures low passenger waiting times at peak
times and lower security lane opening hours at times of low passenger demand.
Figure 1 demonstrates the ebb and flow of passenger demand during a 24h pe-
riod at an airport for four exemplar problems with regards actual passenger flow
data and a supplied generalised forecast of passenger arrivals.

2.2 Evolutionary Optimisation of Security Lane Schedules

The optimisation objective of the security lane problem is to simultaneously re-
duce passenger waiting times whilst also minimising the degree to which security
lanes are open hence reducing costs. The two objectives are mutually exclusive



Robustness and Evolutionary Dynamic Optimisation of Security Schedules 3

(a)

Passenger Arrivals Over a 24h Period

0

40

80

120

160

0:00 4:00 8:00 12:00 16:00 20:00

Time of Day

N
u
m
b
e
r
o
f
A
rr
iv
a
ls

Forecast

Actual

Passenger Arrivals Over a 24h Period

0

40

80

120

160

0:00 4:00 8:00 12:00 16:00 20:00

Time of Day

N
u
m
b
e
r
o
f
A
rr
iv
a
ls

Forecast

Actual

(b)

(c)

Passenger Arrivals Over a 24h Period

0

40

80

120

160

0:00 4:00 8:00 12:00 16:00 20:00

Time of Day

N
u
m
b
e
r
o
f
A
rr
iv
a
ls

Forecast

Actual

Passenger Arrivals Over a 24h Period

0

40

80

120

160

0:00 4:00 8:00 12:00 16:00 20:00

Time of Day

N
u
m
b
e
r
o
f
A
rr
iv
a
ls

Forecast

Actual

(d)

Fig. 1. The forecast arrivals of passengers at security and a set of actual passenger
arrivals over a 24 hour period for the exemplar problems labelled (a) F PAXflow 2425,
(b) F PAXflow 2428, (c) F PAXflow 2501 and (d) F PAXflow 21113 respectively.

hence the problem is multi-objective. The primary objective is to minimise pas-
senger waiting times as defined by:

minimise f1 = max
i∈{1,...,m}

(Wi), (1)

where Wi is the waiting time experienced by the ith passenger at the security
queue and m is the number of passengers that arrive over the time period.

The secondary objective is to minimise the degree of time to which security
lanes are open during over the stated time period, defined as follows:

minimise f2 =

i≤n∑
i=1

Si, (2)

where Si is the time for which the ith security lane shift lasts and n is the number
of shifts within the schedule.

Essentially, the key objective is to minimise the maximum passenger waiting
time experienced by a single passenger across the whole time period. Therefore,
the multi-objective problem can be simplified to finding the lowest maximum
waiting time experienced by a passenger with the fewest hours of security lane
operation. To derive the optimal security lane operational schedule an evolution-
ary approach can be used by deploying a Genetic Algorithm (GA) [7] whereby a
candidate schedule is represented as a set of shifts defined by a start and finish
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time with shifts restricted to being between two and four hours in length and
each gene represents a shift. Since a set of shifts constituting a schedule can
be variable in nature, a variable GA approach is used [6]. Two point crossover
swaps subsets of shifts between two candidate solutions with these subsets being
of differing size. Mutation consists of either swapping a subset of shifts with a
random replacement set or a low probability bitwise mutation of starting and
finishing times of shifts. In terms of fitness selection, a candidate schedule with
a lower maximum passenger waiting time is considered the fitter. If the times
are identical then the schedule with the lower degree of lane operation is con-
sidered the fitter. A simulation based approach is used to measure passenger
waiting times. Passengers are simulated arriving at security defined by the pas-
senger flow forecast and enter a queue operating in a First In First Out (FIFO)
manner. Open security lanes take passengers from this queue and process them
which is defined as randomly taking between 15 and 21 seconds per passenger.
Ten simulations are used to account passenger processing variance.

However, as evidenced in Figure 1, passenger arrivals will often not reflect
the predicted forecast with bad weather weather or road traffic accidents causing
changes to passenger arrivals. With schedules optimised to the forecast this will
likely cause significant queues with security lanes not being open, these schedules
essentially over-fit the forecast and by minimising lane opening hours there is
no spare capacity. To address this issue a dynamic re-optimisaton approach
can be used to improve these optimised schedules by modifying the shifts. In
fact, resource managers often alter schedules to suit demand known as real-
time shift updating [9]. However, there are constraints with this policy in that
shifts due to their human component may only have their start time brought
forward or pushed back by up to an hour and similarly for the finish time with
shifts restricted to being between two and four hours in length. To dynamically
modify security lane schedules a re-optimisation is performed every hour using
the same aforementioned evolutionary approach. Forecast passenger flow is used
for simulated future arrivals and actual passenger events are represented purely
by the current passengers in the queue which could be much larger than expected.
Further details of the approach can be found in [3].

Table 1. GA Parameters used throughout unless otherwise stated.

Population Size 100
Max Generations 2,000
Tournament Size 7
Crossover Probability 0.9
Mutation Probability 0.1
Primary Fitness Measure Minimisation of max. passenger waiting time
Secondary Fitness Measure Minimisation of total lane opening time

To establish the effectiveness of an evolutionary approach to the design of
security lane schedules for both static and dynamic policies experiments are
conducted for the four exemplar problems with results averaged over 25 random
runs. Initial schedules are evolved using the forecast passenger flow information.
These are then tested against the actual passenger flow information. Moreover,
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Table 2. The average maximum waiting times and the scheduled total lane opening
time using actual passenger arrivals for a range of available lanes for the optimal static
and the dynamically re-optimised schedules. Results averaged over 25 evolved schedules
and 10 simulations with varying passenger processing times.

Max. Max. Wait Experienced Schedule Total Lane
Problem Lanes Over 24h Period (in hours) Opening (in hours)

Static Dynamic Static Dynamic

4 2.70 ± 0.26 1.80 ± 0.32 38.14 ± 1.07 42.88 ± 1.55
F PAXflow 5 2.39 ± 0.13 1.90 ± 0.29 42.04 ± 2.06 45.97 ± 2.72

2425 6 2.39 ± 0.15 1.95 ± 0.26 46.74 ± 2.48 50.67 ± 2.72
7 2.29 ± 0.45 1.77 ± 0.45 60.06 ± 2.40 65.38 ± 2.46
8 2.33 ± 0.32 1.85 ± 0.35 64.08 ± 3.17 70.48 ± 3.68

4 2.27 ± 1.17 0.80 ± 0.09 41.02 ± 0.78 44.03 ± 1.61
F PAXflow 5 1.04 ± 0.21 0.69 ± 0.13 44.48 ± 1.68 47.90 ± 2.06

2428 6 0.45 ± 0.02 0.43 ± 0.05 51.68 ± 2.34 53.80 ± 2.58
7 0.26 ± 0.00 0.23 ± 0.03 64.10 ± 2.70 66.18 ± 2.89
8 0.25 ± 0.01 0.22 ± 0.04 69.88 ± 2.47 72.67 ± 3.22

4 3.20 ± 0.86 1.33 ± 0.44 45.12 ± 1.00 48.30 ± 1.70
F PAXflow 5 0.78 ± 0.08 0.73 ± 0.01 48.82 ± 1.81 52.70 ± 1.72

2501 6 0.43 ± 0.01 0.43 ± 0.01 65.22 ± 1.70 67.70 ± 1.87
7 0.23 ± 0.00 0.23 ± 0.00 73.34 ± 3.23 76.70 ± 3.57
8 0.20 ± 0.02 0.17 ± 0.02 83.34 ± 3.07 87.66 ± 3.60

4 0.14 ± 0.00 0.14 ± 0.00 35.20 ± 1.45 36.87 ± 1.88
F PAXflow 5 0.12 ± 0.01 0.12 ± 0.01 44.64 ± 1.78 47.38 ± 2.07

21113 6 0.12 ± 0.02 0.12 ± 0.02 53.56 ± 2.21 56.21 ± 2.69
7 0.12 ± 0.02 0.12 ± 0.02 60.08 ± 2.83 63.05 ± 3.35
8 0.10 ± 0.01 0.10 ± 0.01 66.82 ± 4.66 70.91 ± 5.07

the dynamic re-optimisation of these schedules is also tested against actual pas-
senger flow events. The parameters used by the GA are shown in Table 1.

The results in terms of maximum passenger waiting times and total security
lane opening hours from evolving schedules and dynamically re-optimising them
throughout the given time period are shown in Table 2. It is clear to see that
there are considerable maximum passenger waiting times over several hours in
length for the static schedules for actual arrival events. Dynamic re-optimisation
of these schedules results in significant reductions in these maximum waiting
times. This demonstrates how the static schedules have over-fit the forecast in
terms of the pattern of lane opening hours matching projected peaks in passenger
demand. Deviations from this forecast results in significant passenger delays.
Clearly, the dynamic approach is highly effective in mitigating for the over-
fitting issue but it can be considered that there is a limit to the degree to which
it can improve passenger experiences as a result of the constrained nature of
modifying schedules.
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3 Evolving More Robust Security Lane Schedules

3.1 Considering a More Realistic Forecast of Passenger Arrivals

A problem with the optimisation of the airport security lane schedules can
be considered that the supplied projected forecast of passenger arrivals is too
smooth when compared to actual events as evidenced in Figure 1. Moreover,
from the results in Table 2 it was observed that the static schedules have un-
acceptably lengthy passenger queueing times most likely a result of the evolved
schedules over-fitting this smooth forecast. Consequently, it is considered that a
more realistic forecast could improve results. A simple methodology to achieve
this is to take each passenger’s forecast arrival time at security and add a random
time penalty causing a passenger to be either later or earlier than predicted. A
normal (gaussian) distribution with a mean of zero and a standard deviation of
fifteen minutes is used to generate penalties. The new forecasts for each exem-
plar problem are shown in Figure 2 alongside the actual passenger arrival events
data whereby it can be observed that the forecasts are now more variable than
previously although not mirroring actual events which is to be expected.
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Fig. 2. Randomly perturbed forecast arrivals of passengers at security and a set
of actual passenger arrivals during a given 24 hour period for the exemplar prob-
lems labelled (a) F PAXflow 2425, (b) F PAXflow 2428, (c) F PAXflow 2501 and (d)
F PAXflow 21113 respectively.

The experiments with evolving security lane schedules are repeated using
this new forecast of passenger arrivals with the results from actual events shown
in Table 3. Comparing these results to those in Table 2 it can be observed
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Table 3. The average maximum waiting times and lane opening hours using the ac-
tual passenger volumes for static and dynamically re-optimised schedules evolved using
the randomly modified forecast information. Results averaged over 25 evolved sched-
ules and 10 simulations with varying passenger processing times. Bold values indicate
improvements in waiting times over those in Table 2

Max. Max. Wait Experienced Schedule Total Lane
Problem Lanes Over 24h Period (in hours) Opening (in hours)

Static Dynamic Static Dynamic

4 2.36 ± 0.18 1.44 ± 0.01 38.88 ± 1.71 42.97 ± 1.80
F PAXflow 5 1.90 ± 0.14 1.43 ± 0.01 43.64 ± 1.60 46.18 ± 1.92

2425 6 1.72 ± 0.52 1.29 ± 0.35 54.28 ± 3.39 57.26 ± 3.39
7 1.60 ± 0.61 1.23 ± 0.42 56.70 ± 2.54 60.16 ± 2.77
8 1.84 ± 0.25 1.41 ± 0.10 66.74 ± 3.78 71.11 ± 4.08

4 1.32 ± 0.28 0.82 ± 0.06 42.11 ± 1.27 45.48 ± 1.41
F PAXflow 5 0.78 ± 0.13 0.60 ± 0.10 45.98 ± 1.48 48.89 ± 1.83

2428 6 0.45 ± 0.02 0.43 ± 0.04 54.02 ± 2.02 56.65 ± 2.33
7 0.26 ± 0.01 0.24 ± 0.03 64.78 ± 2.63 66.78 ± 3.13
8 0.22 ± 0.01 0.21 ± 0.02 70.41 ± 3.34 72.94 ± 3.64

4 2.50 ± 0.73 1.25 ± 0.04 46.36 ± 0.78 49.73 ± 1.34
F PAXflow 5 0.75 ± 0.02 0.73 ± 0.01 52.02 ± 1.29 55.71 ± 1.41

2501 6 0.43 ± 0.01 0.43 ± 0.01 65.34 ± 3.02 67.76 ± 3.44
7 0.23 ± 0.00 0.23 ± 0.00 70.74 ± 2.52 74.04 ± 2.57
8 0.20 ± 0.02 0.17 ± 0.02 81.74 ± 3.45 86.35 ± 4.02

4 0.17 ± 0.00 0.17 ± 0.00 36.78 ± 1.61 39.31 ± 1.82
F PAXflow 5 0.13 ± 0.01 0.13 ± 0.01 44.88 ± 2.16 47.12 ± 2.50

21113 6 0.12 ± 0.01 0.12 ± 0.01 51.56 ± 2.61 53.60 ± 3.19
7 0.09 ± 0.01 0.09 ± 0.01 62.14 ± 2.93 65.58 ± 3.07
8 0.09 ± 0.01 0.09 ± 0.01 68.86 ± 2.15 72.77 ± 2.88

that in many cases the static schedules have much lower maximum passenger
waiting times when using the updated forecast that is randomly perturbed. In-
deed, in some cases the maximum waiting time experienced by a passenger is
up to 50% lower. Reductions in the maximum passenger waiting times are also
observed for the dynamic re-optimisation policy although not to the extent as
those seen for the static schedules demonstrating the effectiveness of the dynamic
re-optimisation for sub-optimal schedules. However, an obvious reason that pas-
senger waiting times are improved from using the updated forecast is that there
has been an increase in security lane opening hours and inspection of Table 3
and comparing to Table 2 bears this out. However, in most cases from using the
updated forecast information, the increase in opening hours is relatively small.
The increases though get larger as the number of available lanes increases.

3.2 Using Multiple Randomly Manipulated Predictions

The current methodology has been to use a single forecast of passenger arrivals to
evolve initial static security lane schedules that minimise both passenger waiting
times and security lane opening hours. To deal with optimised schedules over-
fitting this forecast evolutionary dynamic re-optimisation has been shown to suc-
cessfully mitigate this issue to some degree. However, dynamic re-optimsation is
limited in its success due to the constrained nature of schedules, a schedule unfit
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for actual events cannot be greatly improved. Using a more accurate forecast
that better reflects actual events can provide improved results for both static
and dynamic policies.

Consequently, it is considered that further steps could be taken to reduce this
over-fitting of a forecast of passenger arrivals by ensuring initial schedules are
more robust. Indeed, the approach from the previous section of generating a new
forecast by applying random time penalties to projected passenger arrival times
could be extended. Instead of doing this once, a range of randomly perturbed
forecasts can be generated to prevent the security lane schedules matching a
single prediction of passenger events. A set of ten forecasts can be generated
using the approach from the previous section. Candidate schedules can then be
tested against each forecast using the simulation based approach as described
previously. The maximum passenger waiting time experienced is then derived
as the average across these ten forecasts. This approach should derive schedules
that are more robust to unexpected passenger arrivals as evolved schedules do
not fit a single forecast.

Table 4. The average maximum waiting times and lane opening hours using the ac-
tual passenger volumes for the static and dynamically re-optimised schedules evolved
using a range of randomly modified forecasts. Results averaged over 25 evolved sched-
ules and 10 simulations with varying passenger processing times. Bold values indicate
improvements in waiting times over those in Table 3

Max. Max. Wait Experienced Schedule Total Lane
Problem Lanes Over 24h Period (in hours) Opening (in hours)

Static Dynamic Static Dynamic

4 2.40 ± 0.14 1.44 ± 0.01 38.77 ± 0.82 43.28 ± 1.30
F PAX 5 1.78 ± 0.31 1.39 ± 0.13 44.98 ± 1.75 47.56 ± 2.03

flow 2425 6 1.79 ± 0.45 1.34 ± 0.31 59.40 ± 2.08 63.66 ± 2.51
7 1.74 ± 0.52 1.30 ± 0.37 67.46 ± 2.28 71.93 ± 2.50
8 1.92 ± 0.10 1.43 ± 0.00 77.76 ± 3.59 82.93 ± 4.18

4 1.34 ± 0.28 0.77 ± 0.07 42.56 ± 1.09 46.10 ± 1.66
F PAX 5 0.70 ± 0.12 0.60 ± 0.09 47.36 ± 1.55 50.74 ± 1.96

flow 2428 6 0.22 ± 0.00 0.22 ± 0.01 62.98 ± 1.62 65.19 ± 1.89
7 0.21 ± 0.02 0.19 ± 0.03 74.48 ± 2.19 77.60 ± 2.67
8 0.21 ± 0.02 0.19 ± 0.03 82.60 ± 2.19 85.88 ± 2.90

4 1.85 ± 0.28 1.25 ± 0.01 47.02 ± 1.22 50.50 ± 1.72
F PAX 5 0.76 ± 0.02 0.73 ± 0.01 52.77 ± 1.80 56.54 ± 1.97

flow 2501 6 0.42 ± 0.00 0.42 ± 0.00 69.32 ± 1.46 72.23 ± 1.82
7 0.23 ± 0.00 0.23 ± 0.00 79.79 ± 1.97 83.57 ± 2.41
8 0.16 ± 0.02 0.15 ± 0.02 91.36 ± 3.47 96.00 ± 3.98

4 0.12 ± 0.01 0.12 ± 0.01 42.34 ± 1.17 43.80 ± 1.55
F PAX 5 0.09 ± 0.00 0.09 ± 0.00 51.36 ± 1.78 53.07 ± 2.02

flow 21113 6 0.08 ± 0.00 0.08 ± 0.00 59.90 ± 2.05 62.97 ± 2.67
7 0.07 ± 0.00 0.07 ± 0.00 68.84 ± 2.09 71.43 ± 2.86
8 0.07 ± 0.00 0.07 ± 0.00 78.60 ± 4.28 82.25 ± 4.86

The experiments from previously are repeated but now using ten differing
randomly perturbed forecasts with the results shown in Table 4. By comparing
these results to those from Table 3 it can be observed that the use of multiple
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Fig. 3. The average passenger waiting time at security at five minute intervals for the
dynamically re-optimised schedules using a single forecast and a range of forecasts.

forecasts to reduce over-fitting has provided generally better results in terms
of the maximum passenger waiting time for both static and dynamic schedules
although some increases occur especially for the F PAXflow 2425 problem. How-
ever, these are caused by the highly unusual nature of passengers arriving very
early in the day when no lanes are open which is difficult to mitigate for. A
similar situation can be observed with the evolutionary dynamic re-optimisation
of the static schedules. Clearly, as a result of the constraints on schedules, if the
original schedule is poor then the dynamic re-optimisation approach will only be
able to achieve minor improvements in passenger waiting times. Greater detail is
shown in Figure 3 for the dynamic policy in terms of average passenger waiting
times throughout the time period. Although the waiting times are mixed between
using a single and multiple forecasts it can be observed that the use of multiple
forecasts does reduce passenger waiting times in the main. Of additional note is
that in contrast to Table 3, the degree of security lane openings has increased
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for both static and dynamic policies in some cases over 10% although this is
with greater lane availability whereby passenger waiting times are lower. Clearly
though, more robust schedules will have an increase in security lane opening
hours in any case. The original methodology of using a single forecast meant the
evolved schedules reduced security lane operations to fit only this forecast.

4 Related Work

There is limited literature associated with the optimisation of airport security
lane schedules to reduce passenger waiting times. Soukour et al. [16] used a
memetic algorithm merged with an evolutionary algorithm to assign security
staff concentrating on reducing over and undertime and raising staff satisfaction.
However, the security lane problem is similar to optimising airport check-in desks
to minimise passenger delays and the degree to which desks are open. Wang and
Chun [17] used a GA for optimal counter assignment for check-in desks. Chun and
Mak [4] used simulation and search heuristics to determine the optimal check-
in desk allocation that reduces the time desks are open and acceptable queue
lengths for Hong Kong Airport. Bruno and Genovese [2] proposed a number
of optimisation models for the check-in service balancing operational costs with
passenger waiting times for Naples airport. Araujo and Repolho [1] present a new
methodology to optimise the check-in desk allocation problem of maintaining a
service level whilst reducing operational costs. Three phases are used whereby
the first optimises the number of desks based upon [2], the second uses simulation
to test the service level and the third uses an optimisation model to solve an
adjacent desk constraint. Integer programming is used to solve both a common
and dedicated desk problem. Mota [11] uses an evolutionary algorithm and a
simulation approach to establish the allocation and opening times of check-in
desks to reduce passenger waiting times.

The dynamic optimisation of check-in desks has been investigated by Parlar
et al.[15, 14] with regards the optimal opening of desks to minimise a monetary
cost determined as the financial cost of waiting passengers and the cost of open
check-in desks and aircraft delays solved using dynamic programming for a sin-
gle flight scenario. A static policy was recommended as a dynamic policy was
found to suffer from the curse of dimensionality [14]. Hsu et al. [8] investigated
the dynamic allocation of check-in facilities and passengers to desks defined as a
Sequential Stochastic Assignment Problem and solved using binary integer pro-
gramming with positive results. Nandhini et al. [12] investigated the dynamic
optimisation of check-in desks to minimise the conflicting objectives of resource
allocation and passenger waiting times using a GA.

With regards robustness and evolutionary dynamic scheduling there have
been some significant works within the related area of job shop scheduling. Jensen
[10] considers a robustness measure for evolved schedules based on the perfor-
mance of other schedules within the neighbourhood since a modified schedule
will likely be one of these. The measure was found to outperform alternatives
from the literature. Hart et al. [5] consider the use of an Artificial Immune Sys-
tem (AIS) to design robust dynamic job shop schedules by generating sets of
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schedules such that if a reschedule is required another from the set can be used.
More generally for evolutionary methods Paenke et al. [13] use a similar ap-
proach to achieve robustness as used in this paper by averaging over a range
of scenarios. However, the authors use a fitness approximation approach rather
than pure simulation to reduce computational cost.

5 Conclusion

This paper has considered the role of robustness in evolutionary dynamic re-
optimisation of schedules in constrained environments. It was demonstrated that
when evolving optimised schedules for airport security lane problem for min-
imising the conflicting objectives of waiting times and lane operations, sched-
ules would over-fit forecasts and perform badly for unforeseen passenger arrival
events with lengthy delays. Dynamic re-optimisation of schedules was shown
to mitigate for this issue. However, modification of schedules involving human
operators is an example of a constrained environment in that scheduled shifts
cannot be changed to a great degree. Consequently, this paper hypothesised that
robustness must be considered when optimising schedules to improve schedule
performance in unforeseen circumstances. Two simple measures were used to
facilitate robustness, the generation of forecasts of passenger arrivals with ran-
domised delays to better reflect actual events and using a range of these scenarios
to evaluate candidate schedules upon. Experiments demonstrated significant re-
ductions in waiting times when introducing random delays into the forecasts
of passenger arrivals for both static and dynamic policies highlighting the im-
portance of improving forecast accuracies. Further experiments with robustness
demonstrated reductions in passenger waiting times for both static and dynamic
re-optimisation policies over a non-robust approach in a majority of cases with
minimal increases in security lane operations. However, the degree of the reduc-
tions is much larger for static schedules rather than an evolutionary dynamic
re-optimisation policy. This demonstrates the effectiveness of evolutionary dy-
namic re-optimisation of security lane schedules but that some consideration of
robustness will benefit the approach.

Further work should consider improved methods of generating forecasts of
passenger arrivals perhaps using Bayesian methods to apply penalties taking
into consideration the time of day whereby delays are more likely to happen and
also be lengthier such as at rush hour. Furthermore, schedule flexibility could be
incorporated into the initial evolution of schedules to improve the evolutionary
dynamic re-optimisation methodology.
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