
Evolutionary Dynamic Optimisation of Airport
Security Lane Schedules

Darren M. Chitty
Centre for Computational

Intelligence (CCI),
School of Computer Science

and Informatics,
De Montfort University,
Leicester LE1 9BH, UK

Email: darrenchitty@googlemail.com

Mario Gongora
Centre for Computational

Intelligence (CCI),
School of Computer Science

and Informatics,
De Montfort University,
Leicester LE1 9BH, UK

Email: mgongora@dmu.ac.uk

Shengxiang Yang
Centre for Computational

Intelligence (CCI),
School of Computer Science

and Informatics,
De Montfort University,
Leicester LE1 9BH, UK
Email: syang@dmu.ac.uk

Abstract—Reducing costs whilst maintaining passenger satis-
faction is an important problem for airports. One area this can
be applied is the security lane checks at the airport. However,
reducing costs through reducing lane openings typically increases
queue length and hence passenger dissatisfaction. This paper
demonstrates that evolutionary methods can be used to optimise
airport security lane schedules such that passenger dissatisfaction
and staffing costs can be minimised. However, it is shown
that these schedules typically over-fit the forecasts of passenger
arrivals at security such that in actuality significant passenger
delays can occur with deviations from the forecast. Consequently,
this paper further demonstrates that dynamic evolutionary re-
optimisation of these schedules can significantly mitigate this
over-fitting problem with much reduced passenger delays.

I. INTRODUCTION

Airports are under increasing financial pressures and as such
achieving financial savings through a reduction in operational
costs is becoming increasingly important. One major staff
intensive operation within an airport is the manning of security
lanes which passengers are required to pass through on transi-
tion to the air-side. Security is paramount at an airport hence
there can be no operational reduction in the actual screening
of passengers as this would increase security risks. However,
the number of open security lanes can be optimised in order
to reduce staffing costs although this will naturally come at
a cost of extra waiting times for passengers queuing to pass
through security.

Consequently, the work presented in this paper is concerned
with optimising the security lane operations such that the
number of open security lanes during a given time period
are minimised at all times thereby reducing staffing costs.
However, consideration must also be given to ensuring that
the waiting times of passengers queuing to pass through
security is reduced as much as possible. Additionally, the
work presented in this paper considers the robustness of these
optimal schedules to variations in patterns of passenger arrivals
and seeks to mitigate any significant passenger delays through
a dynamic re-optimisation of these optimised schedules.

The work is laid out as follows. Section II will describe
the security lane optimisation problem being tackled. Section

III will profile the technique used to evolve optimal security
lane schedules. Section IV demonstrates how the optimised
schedules can over-fit expected passenger arrivals leading
to significant delays whilst online dynamic evolutionary re-
optimisation can mitigate this problem. Finally, Section V
provides an overview of related work in the field and Section
VI summarises and draws conclusions from the presented
work.

II. THE SECURITY LANE OPTIMISATION PROBLEM

All passengers wishing to travel by air are required to forego
a security check in order to reach the air-side of an airport.
This requires passing through a number of security checks
such as hand luggage checking and passing through metal
detector machines etc. Consequently, an airport will have a
number of available security lanes that can process passengers
for their transition to the air-side. However, the volume of
passengers arriving at security will ebb and flow during the
day primarily as a result of the numbers of departing aircraft
at a given time. Therefore, in order to reduce the staffing costs
of manning open lanes, not all the security lanes need to be
open especially if demand is low. Indeed, airports are under
rising financial pressures and minimising the staffing costs of
manning security lanes is of key consideration.

However, reducing the number of security lanes open at any
time will consequently increase the waiting time of passengers
wishing to pass through security. Indeed, as demand can vary
greatly during the day, if there are not enough security lanes
open in times of high demand, waiting times could increase
significantly which could impinge on passenger satisfaction.
Indeed, Gkritza et al. [1] conducted a study into how in-
creasing waiting times impacted passenger satisfaction and
found that it had a profound effect on passengers although the
authors conceded that other factors can also effect passenger
satisfaction. Moreover, it is conceivable that if frequent delays
occurred to departing aircraft as a result of problems at
security, airlines may consider moving their aircraft to another
airport resulting in financial implications for the airport under
consideration.
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Fig. 1. The forecast arrivals of passengers at security for differing
days labelled, F PAXflow 2425, F PAXflow 2428, F PAXflow 2501 and
F PAXflow 21113 respectively.

Therefore, the problem becomes the minimisation of staff
costs of manning the security lanes by reducing the amount
of time which lanes are open whilst also reducing the wait-
ing times experienced by passengers queuing. These two
objectives are mutually exclusive. Reducing the number of
open security lanes will likely result in a consequent increase
in the waiting times experienced by passengers. However,
as previously mentioned, passenger demand ebbs and flows
during the day dependant on the number of departing flights.
Therefore, it should be possible to reduce the number of open
security lanes at times of low demand whilst increasing the
number of open security lanes at peak demand times. This
should overall provide a minimisation of the staffing costs
associated with open security lanes but with minimal impact
on increasing passenger waiting times at security.

A. Passenger Flow

In order to be able provide an optimisation of the opening
times of security lanes such that in times of low demand the
number of open lanes is reduced, information with regards
passenger numbers arriving at security throughout the day is
required. This information is easily obtainable and enables a
forecast to be made throughout a given time period of the
numbers of passengers expected to be arriving at the security
lane area. This will enable the planning of the opening and
closing of security lanes to meet passenger demand.

Four examples of the forecast of passenger arrivals at
the security area for a 24h period for differing flight
schedules are shown in Figure 1 labelled F PAXflow 2425,
F PAXflow 2428, F PAXflow 2501 and F PAXflow 21113
respectively. From these forecasts it can be seen that there
is considerable variation in the number of passengers arriving
at security during the 24h period. In general, two peaks are
observed, one early in the morning and the other early in the
afternoon and likely coincide with peak aircraft departures.

III. OPTIMISING SECURITY LANE SCHEDULES

The goal of the optimisation process is to reduce the waiting
times experienced by passengers when queuing to pass through
security whilst also reducing the degree to which the security

lanes are open thereby reducing staffing costs. The problem
is multi-objective in nature as these objectives are mutually
exclusive. The primary objective will be considered here as
the reduction of the waiting times experienced by passengers
measured as the absolute maximum waiting time experienced
by a single passenger during the given time period as this will
reflect the greatest level of dissatisfaction of a passenger:

minimise Objective1 =
i≤m
max
i=1

(Wi) (1)

where Wi is the waiting time experienced by the ith

passenger at the security queue and m is the number of
passengers that arrive at security within the given time period.

The secondary objective is to minimise the amount of time
that the security lanes are open during the given time period:

minimise Objective2 =

i≤n∑
i=1

Si (2)

where Si is the time for which the ith security lane shift
lasts and n is the number of shifts within the schedule.

As this problem is multi-objective in nature several methods
could be used. One method is to find a Pareto front of non-
dominated solutions. Alternatively a weighted sum approach
can be used whereby a weight is assigned to the importance
of each objective resulting in a single optimal schedule.
For the purposes of security lane schedule optimisation, a
simpler version of the weighted sum approach will be used.
The key objective is the minimisation of passenger delay at
times of high demand. Reducing the staffing costs is only
a secondary consideration. Essentially, when comparing two
potential solutions, the fitter of the pair will be considered the
solution with the lower maximum waiting time experienced
by passengers. However, if the two possible solutions have
the same maximum waiting times experienced by passengers,
then the secondary objective of minimising the time which
security lanes are open will be minimised. Hence, of the two
solutions, the one with the reduced number of security lane
opening hours will be considered the better of the two.

To solve this optimisation problem a Genetic Algorithm
(GA) [2] approach will be used. A GA uses the principles of
evolution to optimise a given problem using a population of
potential solutions and selection (survival of the fittest) with
crossover and mutation of the parent genomes to form new
descendant potential solutions. The representation of a security
lane opening schedule will consist of a set of shifts defined
simply by a start and end time. Moreover, there are constraints
associated with these shifts in that it is assumed that a shift will
be performed by a group of individuals such that the shift must
not be less than two hours in length and no more than four
hours in length. A shift will be automatically allocated at its
start time to the next available security lane that is not already
open. If no security lane can be found that will accommodate
the given shift (all available security lanes are currently open),
then this shift be considered invalid and ignored.



TABLE I
AN EXAMPLE EVOLUTIONARY ALGORITHM REPRESENTATION OF A

SCHEDULE OF SHIFTS FOR SECURITY LANE OPENINGS.

Shift Start Time End Time Shift Start Time End Time

1 03:30 05:30 10 13:30 16:30
2 07:00 09:00 11 18:30 19:30
3 09:30 11:30 12 04:00 08:00
4 11:30 13:30 13 08:00 11:30
5 13:30 16:30 14 15:30 17:30
6 17:30 19:30 15 04:30 08:00
7 04:00 07:00 16 05:00 08:30
8 07:00 09:00 17 05:00 08:30
9 11:30 13:30

As a set of shifts can differ in number, a variable genome
approach will be used [3] and can be considered similar to
Linear Genetic Programming (LGP) [4] whereby the genome
consists of a variable list of instructions to execute. The
genome in this case consists of a variable list of shifts to
be performed defined by a start time and end time. Two
point crossover is performed by taking a subset of shifts from
each parent individual and copying them across replacing the
current subset. These subsets do not need to consist of the
same number of shifts hence leading to variability in the
genome size. Two forms of mutation are used. The first is
similar to crossover with a subset of shifts from a solution
being replaced by a subset of randomly generated shifts which
can be of a differing number. The second mutation operator
simply performs a bitwise random mutation of a shift start or
end time with a given probability. An example of a candidate
solution representing a security lane shift schedule is shown
in Table I with a matching gant chart shown in Figure 2.

As previously discussed, the fitness of a candidate solution
will consist of two measures. Firstly, the maximum waiting
time experienced by a passenger over the given time period.
The second fitness measure is the total time of the valid shifts
performed during the given time period. Taking two candidate
solutions, if one has a lower maximum waiting time than the
other then this is considered the fitter. However, if they have
the same maximum waiting time then the solution with the
lesser degree of shift time considered the fitter.

To measure the primary fitness of candidate solutions a
simulation based approach is used. The genome of a candidate
solution is translated into a schedule of valid shifts that operate
security lanes during the given time period. A simulation
is then conducted whereby passengers arrive at the security
lane area as specified by the expected forecast for a set of
time steps over the given time period. At each time step
passengers arrive at the security lanes and are placed at the
end of a queue. Passengers are then taken from the front
of the queue in a first in first out (FIFO) manner by each
open security lane and processed through security until the
end of the time step is reached. This process is repeated at
each time step throughout the given time period. Security
processing is defined as taking between fifteen and twenty
one seconds. The time to process a passenger is randomly
generated within this range using a uniform distribution. The
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Fig. 2. An example airport security lane shift schedule generated from a
candidate solution as described by Table I.

waiting times of each passenger through the queue are tracked
and the maximum time experienced by a single passenger is
reported as the primary fitness. A number of simulations are
conducted to enable variations in passenger processing times to
be accounted for and the maximum waiting time experienced
by an individual passenger averaged over these simulations.

A. Evolutionary Optimisation Results

To test the capability of this evolutionary approach to min-
imising both the maximum passenger waiting time experienced
and the time for which security lanes are open, the four
exemplar days of passenger numbers will be used as described
in Figure 1. For each example, the forecast predicts the number
of passengers arriving at security at each time step during
the given time period. In this case the time period is a 24
hour period and each time step is defined as a five minute
interval. Ten separate simulations are used to account for
variations in passenger processing times and the effect on the
maximum passenger waiting times. The parameters used for
the evolutionary algorithm approach are shown in Table II. The
algorithms are implemented in C++ and are executed using an
Intel i7 processor using eight parallel threads of execution to
fully exploit the processor.

TABLE II
PARAMETERS USED THROUGHOUT UNLESS OTHERWISE STATED.

Population Size 100
Max Generations 2,000
Tournament Size 7
Crossover Probability 0.9
Mutation Probability 0.1
Fitness Minimisation of maximum
Measure passenger waiting time and in

addition the total shift time

Results for each problem instance and with a varying
number of maximum security lanes available are shown in
Table III. Twenty five separate experimental runs of the
evolutionary algorithm are performed with ten simulations and
the results averaged over these experiments. The two fitness
measures are shown with a third observation for reference



TABLE III
THE AVERAGE MAXIMUM WAITING TIMES AND AVERAGE OVERALL

WAITING TIMES AND THE TOTAL AMOUNT OF TIME SECURITY LANES ARE
OPEN IN HOURS FOR EACH PROBLEM FORECAST AND FOR A RANGE OF
MAXIMUM AVAILABLE LANES. RESULTS ARE AVERAGED OVER THE 25

EVOLVED SCHEDULES AND 10 SIMULATIONS WITH VARYING PASSENGER
PROCESSING TIMES.

Max. Max. Waiting Av. Waiting Total
Problem Lanes Time Time Lane

Experienced Experienced Opening

4 0.67± 0.00 0.26± 0.02 38.14± 1.07
F PAXflow 5 0.24± 0.00 0.08± 0.00 42.04± 2.06

2425 6 0.09± 0.00 0.04± 0.00 46.74± 2.48
7 0.08± 0.00 0.03± 0.00 60.06± 2.40
8 0.07± 0.00 0.03± 0.00 64.08± 3.17

4 0.74± 0.00 0.35± 0.03 41.02± 0.78
F PAXflow 5 0.26± 0.00 0.09± 0.01 44.48± 1.68

2428 6 0.12± 0.00 0.04± 0.00 51.68± 2.34
7 0.08± 0.00 0.03± 0.00 64.10± 2.70
8 0.07± 0.00 0.03± 0.00 69.88± 2.47

4 0.71± 0.00 0.36± 0.03 45.12± 1.00
F PAXflow 5 0.21± 0.00 0.08± 0.01 48.82± 1.81

2501 6 0.09± 0.00 0.03± 0.00 65.22± 1.70
7 0.08± 0.00 0.03± 0.00 73.34± 3.23
8 0.07± 0.00 0.03± 0.00 83.34± 3.07

4 0.07± 0.00 0.03± 0.00 35.20± 1.45
F PAXflow 5 0.06± 0.00 0.02± 0.00 44.64± 1.78

21113 6 0.05± 0.00 0.02± 0.00 53.56± 2.21
7 0.04± 0.00 0.02± 0.00 60.08± 2.83
8 0.04± 0.00 0.02± 0.00 66.82± 4.66

purposes, the average waiting time experienced by all the
passengers over the given time period. The first observation
that can be made is that as the number of available security
lanes increases, the maximum waiting time experienced by a
passenger reduces significantly. Indeed, by simply increasing
the maximum number of lanes from four to five results in
a reduction in the maximum waiting time of up to 71%.
However, as the maximum number of available security lanes
increases the number of hours that the security lanes are open
increases likewise. Thus, the evolutionary approach exploits
the availability of extra security lanes to reduce the maximum
waiting times experienced even though this increases staffing
requirements. Note that the variation in the maximum pas-
senger waiting times is zero indicating that in every case the
minimisation of the passenger maximum waiting time has been
achieved. However, there is variation in the total amount of
time that the security lanes are open.

Also of note is the average waiting times experienced by all
the passengers over the twenty four hour period. Aside from
when there are only four available security lanes, the average
passenger waiting times at security are merely a matter of
being five minutes or less.

IV. DYNAMIC RE-OPTIMISATION OF SECURITY LANES

The optimal security lane opening time schedules generated
by an evolutionary approach in the previous section use a
forecast of the expected passenger numbers. However, in prac-
tice it is unlikely that actual passenger arrivals at the security

lanes will mirror this forecast, there will be some differences.
Moreover, a number of factors can have a significant impact on
how passengers arrive at the security lane area. For instance,
predicted bad weather could result in passengers arriving at
the airport early to avoid problems or later by being delayed.
Alternatively, a traffic accident near the airport could result in
passengers arriving late. A further scenario that could impact
passenger arrival numbers is that there could be a block
booking of passengers such as a school trip whereby many
passengers will arrive at security at the same time.

Figure 3 shows the forecast passenger numbers arriving
during a 24h period at the security lane area alongside a set
of actual passenger arrivals for a single 24h period for each
of the four exemplar days. From this it can be broadly seen
that the actual passenger volumes follow the forecast but with
a large degree of variation. Indeed, it can be observed that
the forecast numbers are a much smoother prediction than the
actual reality of passengers arriving at security.

The optimal security lane opening schedules evolved in
the previous section can be measured as to their perfor-
mance against these actual passenger arrivals by running them
through the airport security lane simulation. These results are
shown in Table IV. From these it can be observed that there
has been a considerable increase in the maximum waiting
time experienced by a passenger for all problem instances and
ranges of maximum security lanes available compared to using
the forecast passenger numbers. The most significant of these
occurs for the F PAXflow 2425 problem instance with as
much as a 32 fold increase although this arises from a very low
maximum wait from the forecast passenger flows. However, it
is clear that with a greater availability of security lanes there
is a greater capacity to deal with variations in passenger flow
from expectations although the evolved schedules for greater
numbers of lanes did have a greater number of hours of open
security lanes which would account for this.

The reasons for this increase become clearer when analysing
the maximum wait experienced by passengers in the current
queue at five minute intervals across the given time period
whereby it was observed that in some cases passengers have
arrived early or late such that there are no security lanes open
incurring significant waiting times at security. This effect is
most obvious with the F PAXflow 2425 problem whereby
passengers arrive earlier than expected at the beginning of the
time period before any lanes are open. Looking at the actual
passenger flow numbers from Figure 3 it can be observed that
these delays are caused by a very small number of passengers
arriving earlier than expected. The same can be seen with a
couple of passengers arriving at security later than expected
hence security lanes have all closed for the time period.

A. Evolutionary Dynamic Re-Optimisation

It has been demonstrated that there has been a considerable
increase in passenger waiting times for schedules evolved
using forecast data and tested using actual passenger arrival
data. A primary reason for this is that the evolved schedules
are essentially over-fitting the forecast passenger arrivals data.
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Fig. 3. The forecast arrivals of passengers at security and a set of actual passenger arrivals during a given day for the exemplar days labelled (a)
F PAXflow 2425, (b) F PAXflow 2428, (c) F PAXflow 2501 and (d) F PAXflow 21113 respectively.

TABLE IV
THE AVERAGE MAXIMUM WAITING TIMES IN HOURS USING THE

FORECAST PASSENGER VOLUMES AND THE ACTUAL PASSENGER VOLUMES
AND THE MULTIPLE OF THE INCREASE IN MAXIMUM WAITING TIMES

OVER A RANGE OF MAXIMUM AVAILABLE LANES. RESULTS ARE
AVERAGED OVER THE 25 EVOLVED SCHEDULES AND 10 SIMULATIONS

WITH VARYING PASSENGER PROCESSING TIMES.

Max. Max. Forecast Max. Actual Multiple
Problem Lanes Waiting Time Waiting Time Increase

Experienced Experienced

4 0.67± 0.00 2.70± 0.26 4.04x
F PAXflow 5 0.24± 0.00 2.39± 0.13 9.94x

2425 6 0.09± 0.00 2.39± 0.15 25.29x
7 0.08± 0.00 2.29± 0.45 28.03x
8 0.07± 0.00 2.33± 0.32 32.12x

4 0.74± 0.00 2.27± 1.17 3.07x
F PAXflow 5 0.26± 0.00 1.04± 0.21 4.03x

2428 6 0.12± 0.00 0.45± 0.02 3.86x
7 0.08± 0.00 0.26± 0.00 3.03x
8 0.07± 0.00 0.25± 0.01 3.39x

4 0.71± 0.00 3.20± 0.86 4.48x
F PAXflow 5 0.21± 0.00 0.78± 0.08 3.80x

2501 6 0.09± 0.00 0.43± 0.01 4.88x
7 0.08± 0.00 0.23± 0.00 2.91x
8 0.07± 0.00 0.20± 0.02 2.98x

4 0.07± 0.00 0.14± 0.00 1.97x
F PAXflow 5 0.06± 0.00 0.12± 0.01 2.18x

21113 6 0.05± 0.00 0.12± 0.02 2.49x
7 0.04± 0.00 0.12± 0.02 2.69x
8 0.04± 0.00 0.10± 0.01 2.68x

In both reducing the maximum passenger waiting time and
the number of hours the security lanes are open there is no
flexibility within the schedules to be able to deal with any
deviation from forecast passenger arrivals at security.

A methodology that could be used to deal with passenger
arrivals deviating from the expected forecast is to dynami-
cally re-optimise the optimised schedules as time progresses.
Indeed, managers frequently alter schedules when demand
differs from expectations and this is known as online or real-
time shift updating [5]. Thus, when passengers begin to arrive
earlier than expected and thereby increasing the size of the
queue, opening extra security lanes or ensuring that currently
open security lanes remain open for longer will obviously have
a positive effect in reducing the size of the queue and thereby
passenger waiting times. However, there are limitations to
achieving this. Clearly, security lanes cannot simply be opened

in an ad-hoc manner, staff need to be on-site to be able to do
this. Equally, security lanes cannot be kept open if staff have
completed too many hours or finish work for other reasons.

Therefore, it is envisaged that whilst it is possible to modify
a schedule dynamically, this can only be performed to a limited
degree. In this case it is considered that a schedule can be
dynamically modified by bringing forward or pushing back
the start time of a security lane opening by up to an hour.
Equally, the closing time of a security lane can be brought
forward or pushed back by up to an hour. Additional instances
of security lanes being opened cannot be added. Also, as with
the generation of optimal static schedules, security lane shifts
must not exceed four hours or be less than two hours in length.

To solve the dynamic re-optimisation of schedules once
again an evolutionary algorithm is considered as previously.
However, there are some differences from the previous use of
an evolutionary algorithm to generate the optimal schedule.
The primary difference being that the number of shifts in
the schedule are fixed, no shifts can be added or removed.
Therefore, the only changes that can occur are the start and
end times of each shift. Moreover, these can only be within
plus or minus one hour and shifts must be within a minimum
of two hours and a maximum of four hours. Subsequently, the
evolutionary algorithm in this case more closely resembles a
GA. Each individual is of a fixed length and as such two
point crossover can be used such that the sizes of the two
offspring are the same as the parents. Mutation also differs
from previously in that the start and end times of shifts are
merely modified as a result of a mutation probability and
only within plus or minus one hour. Fitness remains the same
as previously, the minmisation of the maximum waiting time
experienced by a passenger during the time period. However,
with dynamic re-optimisation, clearly events that are in the
past cannot be changed thus the dynamic re-optimisation only
considers events in the future. Therefore, the fitness measure
of the average maximum passenger waiting time is only
considered from the current time T in the simulation whereby
the re-optimisation occurs and the end of the given time period.

To implement a dynamic re-optimisation approach, the
optimised schedules from the first phase detailed in Section III
will be run through the security lane simulation against actual
recorded days passenger flow numbers. Moreover, at each hour
during the simulation, the schedule will be re-optimised using



TABLE V
THE AVERAGE MAXIMUM WAITING TIMES AND OVERALL AVERAGE WAITING TIMES IN HOURS USING THE ACTUAL PASSENGER VOLUMES OVER A

RANGE OF MAXIMUM AVAILABLE LANES FOR THE OPTIMAL STATIC SCHEDULES AND THE DYNAMICALLY RE-OPTIMISED SCHEDULES. RESULTS ARE
AVERAGED OVER THE 25 EVOLVED SCHEDULES AND 10 SIMULATIONS WITH VARYING PASSENGER PROCESSING TIMES.

Max. Maximum Wait Experienced Average Max. Wait Over
Problem Lanes Over 24h Period (in hours) Five Minute Intervals (in hours)

Static Schedule Dynamic Schedule Static Schedule Dynamic Schedule

4 2.70± 0.26 1.80± 0.32 0.46± 0.05 0.26± 0.06
F PAXflow 5 2.39± 0.13 1.90± 0.29 0.29± 0.05 0.20± 0.05

2425 6 2.39± 0.15 1.95± 0.26 0.26± 0.05 0.18± 0.04
7 2.29± 0.45 1.77± 0.45 0.21± 0.06 0.14± 0.05
8 2.33± 0.32 1.85± 0.35 0.22± 0.06 0.14± 0.05
4 2.27± 1.17 0.80± 0.09 0.55± 0.17 0.22± 0.04

F PAXflow 5 1.04± 0.21 0.69± 0.13 0.23± 0.06 0.13± 0.02
2428 6 0.45± 0.02 0.43± 0.05 0.10± 0.01 0.08± 0.01

7 0.26± 0.00 0.23± 0.03 0.05± 0.00 0.04± 0.00
8 0.25± 0.01 0.22± 0.04 0.04± 0.00 0.04± 0.00
4 3.20± 0.86 1.33± 0.44 0.96± 0.18 0.34± 0.14

F PAXflow 5 0.78± 0.08 0.73± 0.01 0.23± 0.05 0.13± 0.01
2501 6 0.43± 0.01 0.43± 0.01 0.06± 0.00 0.06± 0.00

7 0.23± 0.00 0.23± 0.00 0.05± 0.00 0.04± 0.00
8 0.20± 0.02 0.17± 0.02 0.04± 0.00 0.03± 0.00
4 0.14± 0.00 0.14± 0.00 0.03± 0.00 0.03± 0.00

F PAXflow 5 0.12± 0.01 0.12± 0.01 0.03± 0.00 0.02± 0.00
21113 6 0.12± 0.02 0.12± 0.02 0.02± 0.00 0.02± 0.00

7 0.12± 0.02 0.12± 0.02 0.02± 0.00 0.02± 0.00
8 0.10± 0.01 0.10± 0.01 0.02± 0.00 0.02± 0.00

the evolutionary algorithm as detailed. It should be stated that
at each re-optimisation phase the original optimised schedule
will be used as the template to seed the initial population with
variations of this original optimal schedule using mutations
of the start and end times of shifts within plus or minus one
hour. Only fifty generations of evolution are required due to
the rigidity of schedules. The re-optimisation process uses the
forecast passenger flow as previously from the re-optimisation
point in time T . Additionally, the current state of the queue
is used from the actual events. Thus is the queue has a large
number of passenger within it then the re-optimisation process
will likely open more desks than planned to reduce passenger
waiting time.

B. Dynamic Re-optimisation Experimental Results

To test the effectiveness of a dynamic re-optimisation pro-
cess using an evolutionary algorithm, each of the 25 evolved
schedules for each problem from Section III will be run though
the re-optimisation process using 10 simulations with random
passenger processing times. The results will be averaged over
the 25 schedules and the 10 simulations. The results in terms
of the maximum waiting time experienced by a passenger
over the given time period and the average maximum wait
experienced at each five minute interval across the time period
are shown in Table V.

From these results it can be observed that there is a reduc-
tion in the maximum waiting time experienced by a passenger
when using a dynamic approach vs. a static approach for most
problems and ranges lane availability. Indeed, the reduction
in maximum wait is significantly reduced when only a few
security lanes are available demonstrating how easily fewer
security lanes can be overwhelmed by differences in passenger

flows. A reason for this is that the maximum passenger delay
cannot likely be reduced even with a dynamic approach hence
there is no change. Additionally, the low passenger volumes
for this problem instance ensure that passenger waiting times
at security are relatively low in any case. However, it should
be noted that when considering the average maximum wait
across the time period there has still been a small reduction.

Visualisations of the differences between the optimised
static schedules and dynamic re-optimised schedules in terms
of the maximum passenger wait at five minute intervals
throughout the exemplar 24h periods are shown in Figure 4.
From these it can be seen that the dynamic approach shows
significant improvement when there are only four or five avail-
able security lanes. Beyond that performance is very similar.
It can also be observed that for problem F PAXflow 2425
the results are highly skewed by the early and late arrival of
passengers at either end of the 24h period. Moreover, even the
dynamic approach cannot mitigate this issue to a significant
degree although passenger delays are reduced.

V. RELATED WORK

Within the field of airport security lane optimisation there
has been limited work concerned with the optimal opening of
security lanes to reduce passenger waiting times. However,
there has been work associated with staff scheduling for
security lanes. Soukour et al. [6] use a memetic algorithm
merged with an evolutionary algorithm to assign staff using
an objective function based on over and undertime and staff
satisfaction. Some work has also been performed with regards
security screening. McLay et al. [7] investigated assigning
passengers to varying levels of security screening with the
goal of maximising security coverage subject to capacity and
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Fig. 4. The average maximum waiting time experienced by a passenger using actual passenger flow data for the static optimal schedule and a dynamically
re-optimisation schedule for each of the four problem instances with results averaged over the 25 evolved schedules and 10 simulations with varying passenger
processing times.

assignment constraints. This optimisation problem was solved
using a linear programming approach.

However, the security lane optimisation problem shares
many characteristics with the optimisation of airport check-in
desks. Indeed, early work by Wang and Chun [8] used a GA
for optimal counter assignment for check-in desks. Chun and
Mak [9] used simulation and search heuristics to determine the
optimal check-in desk allocation that reduces the time desks
are open and ensures queue lengths are within an acceptable
tolerance for Hong Kong Airport. Bruno and Genovese [10]
proposed a number of optimisation models for the check-
in service balancing operation costs with passenger waiting
times. Simulations based upon Naples airport were used with

ten problems considered which used 50 flights. Solutions were
found using FICO XPress Optimization Suite 7 although no
advantages were reported. Parlar et al.[11] investigated the
allocation of exclusive use check-in counters. A static policy
is recommended as it is contended that a dynamic policy
suffers from the curse of dimensionality. The overall objective
is to minimise passenger waiting times, counter operational
costs and passenger delays. The static policy only consists
of a few decision variables and hence is an easy to optimise
system. Araujo and Repolho [12] present a new methodology
to optimise the check-in desk allocation problem maintaining
a service level whilst reducing operational costs. Three phases
are used whereby the first optimises the number of desks,



the second uses simulation to test the service level and the
third uses an optimisation model to solve an adjacent desk
constraint. The optimisation for phase one is based upon
the Bruno and Genovese paper [10] with modifications for
minimising operational costs whilst maintaining service levels
at each time step. Phase 2 uses the ARENA software tool to
conduct airport simulations. Integer programming is used to
solve both a common and dedicated desk problem. Mota [13]
uses an evolutionary algorithm and a simulation approach to
establish the allocation and opening times of check-in desks
to reduce passenger waiting times.

Dynamic optimisation of check-in desks has been investi-
gated by Parlar and Sharafali [14] with regards the optimal
opening of desks to minimise a monetary cost determined as
the financial cost of waiting passengers and the cost of open
check-in desks and aircraft delay costs. A stochastic dynamic
programming model is then used to minimise this cost for a
single flight scenario. However, the dynamic aspect is based
on optimising for a set of time-windows rather than unforseen
events. Hsu et al. [15] investigated the dynamic allocation of
check-in facilities and the dynamic allocation of passengers
to desks. The problem is modelled as a Sequential Stochastic
Assignment Problem (SSAP) and solved using binary integer
programming. Results from data at Taoyuan International
Airport, Taiwan showed that a dynamic allocation approach
can increase desk utilisation and reduce waiting times for
passengers. Nandhini et al. [16] investigated the dynamic
optimisation of check-in desks to minimise the conflicting
objectives of resource allocation and passenger waiting times.
A genetic algorithm was used to create optimised schedules
for the check-in desks. However, the dynamic aspect is not
so much a re-optimisation but a methodology of combining
desks to cover multiple flights.

VI. CONCLUSION

Reducing airport costs whilst maintaining passenger satis-
faction levels is becoming an increasingly important issue with
a key area being the airport security checking area consisting
of a number of lanes. The work presented in this paper
successfully used an evolutionary algorithm to design a secu-
rity lane schedule that minimised the maximum waiting time
a passenger may experience when queuing to pass through
security whilst minimising the amount of time that security
lanes are open. Using forecast passenger flow data, security
lanes opened during periods of predicted high passenger flow
and quickly closed when forecast demand dropped.

However, although it was successfully demonstrated that
an evolutionary algorithm could effectively reduce the degree
of delay a passenger experiences at security, deviations from
passenger flow forecasts had considerable effect on these
optimised schedules. Since the schedules had the number of
security lanes optimised to the forecast demand there is no
spare capacity within the schedule to cope with deviations
in passenger arrivals, the schedules over-fit the forecast pas-
senger flow. To handle this issue, a dynamic re-optimisation
methodology was introduced whereby an optimal schedule

can be modified throughout a time period at given intervals
to satisfy unexpected passenger flows. Again, an evolutionary
algorithm was used to perform these dynamic modifications to
an optimised schedule with significant reductions in passenger
delays observed with minimal schedule changes.

Further work needs to consider an alternative robust
scheduling technique whereby a range of actual passenger
flows are considered rather than a forecast. A further aspect to
consider is that some evolved security lane schedules may be
difficult to dynamically re-optimise possibly due to constraints
on working hours. Therefore, it may be useful to test schedules
from the first optimisation process as to how well they react
to dynamic re-optimisation. Finally, a unified model with staff
scheduling could be considered.
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