14 research outputs found

    Dipole source analysis of auditory P300 response in depressive and anxiety disorders

    Get PDF
    This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies

    Regulation of conditional gene expression by coupled transcription repression and RNA degradation

    Get PDF
    Gene expression is determined by a combination of transcriptional and post-transcriptional regulatory events that were thought to occur independently. This report demonstrates that the genes associated with the Snf3p–Rgt2p glucose-sensing pathway are regulated by interconnected transcription repression and RNA degradation. Deletion of the dsRNA-specific ribonuclease III Rnt1p increased the expression of Snf3p–Rgt2p-associated transcription factors in vivo and the recombinant enzyme degraded their messenger RNA in vitro. Surprisingly, Rnt1ps effect on gene expression in vivo was both RNA and promoter dependent, thus linking RNA degradation to transcription. Strikingly, deletion of RNT1-induced promoter-specific transcription of the glucose sensing genes even in the absence of RNA cleavage signals. Together, the results presented here support a model in which co-transcriptional RNA degradation increases the efficiency of gene repression, thereby allowing an effective cellular response to the continuous changes in nutrient concentrations

    SRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity

    Get PDF
    Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity

    Genome-Wide Prediction and Analysis of Yeast RNase III-Dependent snoRNA Processing Signals

    No full text
    In Saccharomyces cerevisiae, the maturation of both pre-rRNA and pre-small nucleolar RNAs (pre-snoRNAs) involves common factors, thereby providing a potential mechanism for the coregulation of snoRNA and rRNA synthesis. In this study, we examined the global impact of the double-stranded-RNA-specific RNase Rnt1p, which is required for pre-rRNA processing, on the maturation of all known snoRNAs. In silico searches for Rnt1p cleavage signals, and genome-wide analysis of the Rnt1p-dependent expression profile, identified seven new Rnt1p substrates. Interestingly, two of the newly identified Rnt1p-dependent snoRNAs, snR39 and snR59, are located in the introns of the ribosomal protein genes RPL7A and RPL7B. In vitro and in vivo experiments indicated that snR39 is normally processed from the lariat of RPL7A, suggesting that the expressions of RPL7A and snR39 are linked. In contrast, snR59 is produced by a direct cleavage of the RPL7B pre-mRNA, indicating that a single pre-mRNA transcript cannot be spliced to produce a mature RPL7B mRNA and processed by Rnt1p to produce a mature snR59 simultaneously. The results presented here reveal a new role of yeast RNase III in the processing of intron-encoded snoRNAs that permits independent regulation of the host mRNA and its associated snoRNA

    The remodeling of metabolic brain pattern in patients with extracranial diffuse large B-cell lymphoma

    No full text
    Abstract Background Owing to the advances in diagnosis and therapy, survival or remission rates for lymphoma have improved prominently. Apart from the lymphoma- and chemotherapy-related somatic symptom burden, increasing attention has been drawn to the health-related quality of life. The application of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) has been routinely recommended for the staging and response assessment of FDG-avid lymphoma. However, up till now, only a few researches have investigated the brain metabolic impairments in patients with pre-treatment lymphoma. The determination of the lymphoma-related metabolic brain pattern would facilitate exploring the tailored therapeutic regimen to alleviate not only the physiological, but also the psychological symptoms. In this retrospective study, we aimed to establish the diffuse large B-cell lymphoma-related pattern (DLBCLRP) of metabolic brain network and investigate the correlations between DLBCLRP and several indexes of the staging and response assessment. Results The established DLBCLRP was characterized by the increased metabolic activity in bilateral cerebellum, brainstem, thalamus, striatum, hippocampus, amygdala, parahippocampal gyrus and right middle temporal gyrus and by the decreased metabolic activity in bilateral occipital lobe, parietal lobe, anterior cingulate gyrus, midcingulate cortex and medial frontal gyrus. Significant difference in the baseline expression of DLBCLRP was found among complete metabolic response (CMR), partial metabolic response (PMR) and progressive metabolic disease (PMD) groups (P  0.05), the post-treatment declines of DLBCLRP expression were significantly positively correlated with Ann Arbor staging (r s  = 0.284, P < 0.05) and IPI (r s  = 0.297, P < 0.05). Conclusions The proposed DLBCLRP would lay the foundation for further investigating the cerebral dysfunction related to DLBCL itself and/or treatments. Besides, the expression of DLBCLRP was associated with the tumor burden of lymphoma, implying a potential biomarker for prognosis
    corecore