27 research outputs found

    Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in the North China Plain

    Get PDF
    Atmospheric NH3 plays a vital role not only in the environmental ecosystem but also in atmosphere chemistry. To further understand the effects of NH3 on the formation of haze pollution in Beijing, ambient NH3 and related species were measured and simulated at high resolutions during the wintertime Air Pollution and Human Health-Beijing (APHH-Beijing) campaign in 2016. We found that the total NHx (gaseous NH3+particle NH4 +) was mostly in excess of the SO4 2−-NO3 −-NH4 +-water equilibrium system during our campaign. This NHx excess made medium aerosol acidity, with the median pH value being 3.6 and 4.5 for polluted and nonpolluted conditions, respectively, and enhanced the formation of particle phase nitrate. Our analysis suggests that NH4NO3 is the most important factor driving the increasing of aerosol water content with NO3 − controlling the prior pollution stage and NH4 + the most polluted stage. Increased formation of NH4NO3 under excess NHx, especially during the nighttime, may trigger the decreasing of aerosol deliquescence relative humidity even down to less than 50% and hence lead to hygroscopic growth even under RH conditions lower than 50% and the wet aerosol particles become better medium for rapid heterogeneous reactions. A further increase of RH promotes the positive feedback “aerosol water content-heterogeneous reactions” and ultimately leads to the formation of severe haze. Modeling results by Nested Air Quality Prediction Monitor System (NAQPMS) show the control of 20% NH3 emission may affect 5–11% of particulate matter PM2.5 formation under current emissions conditions in the North China Plain

    Introduction to Special Issue - In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-2 Beijing)

    Get PDF
    Abstract. The Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) programme is an international collaborative project focusing on understanding the sources, processes and health effects of air pollution in the Beijing megacity. APHH-Beijing brings together leading China and UK research groups, state-of-the-art infrastructure and air quality models to work on four research themes: (1) sources and emissions of air pollutants; (2) atmospheric processes affecting urban air pollution; (3) air pollution exposure and health impacts; and (4) interventions and solutions. Themes 1 and 2 are closely integrated and support Theme 3, while Themes 1-3 provide scientific data for Theme 4 to develop cost-effective air pollution mitigation solutions. This paper provides an introduction to (i) the rationale of the APHH-Beijing programme, and (ii) the measurement and modelling activities performed as part of it. In addition, this paper introduces the meteorology and air quality conditions during two joint intensive field campaigns - a core integration activity in APHH-Beijing. The coordinated campaigns provided observations of the atmospheric chemistry and physics at two sites: (i) the Institute of Atmospheric Physics in central Beijing, and (ii) Pinggu in rural Beijing during 10 November – 10 December 2016 (winter) and 21 May- 22 June 2017 (summer). The campaigns were complemented by numerical modelling and automatic air quality and low-cost sensor observations in the Beijing megacity. In summary, the paper provides background information on the APHH-Beijing programme, and sets the scene for more focussed papers addressing specific aspects, processes and effects of air pollution in Beijing

    An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography : Implications for aerosol pH estimate

    Get PDF
    Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an intercomparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl-, SO2-4, NO-3, NHC4 and KC. However, F-, Mg2C and Ca2C were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of nonrefractory SO2-4, NO-3 and NHC4 generally correlated very well with the filter-analysis-based data in our study, but the absolute concentrations differ by up to 42 %. Cl-from the two methods are correlated, but the concentration differ by more than a factor of 3. The analyses of certified reference materials (CRMs) generally showed a good detection accuracy (DA) of all ions in all the labs, the majority of which ranged between 90 % and 110 %. The DA was also used to correct the ion concentrations to showcase the importance of using CRMs for calibration check and quality control. Better agreements were found for Cl-, SO2-4, NO-3, NHC4 and KC across the labs after their concentrations were corrected with DA; the coefficient of variation (CV) of Cl-, SO2-4, NO-3, NHC4 and KC decreased by 1.7 %, 3.4 %, 3.4 %, 1.2 % and 2.6 %, respectively, after DA correction. We found that the ratio of anion to cation equivalent concentrations (AE/CE) and ion balance (anions-cations) are not good indicators for aerosol acidity estimates, as the results in different labs did not agree well with each other. In situ aerosol pH calculated from the ISORROPIA II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA II model is more consistent

    GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model:model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    No full text
    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas-and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas-and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatio-temporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24% in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62% of surface mercury concentrations and deposition over China, respectively. Along the rim of the western Pacific, the contributions from Chinese sources are 11 and 15.2% over the Korean Peninsula, 10.4 and 8.2% over Southeast Asia, and 5.7 and 5.9% over Japan. But for North America, Europe and western Asia, the contributions from China are all below 5%

    Inter-annual variations of wet deposition in Beijing during 2014-2017:implications of below-cloud scavenging of inorganic aerosols

    No full text
    Wet scavenging is an efficient pathway for the removal of particulate matter (PM) from the atmosphere. High levels of PM have been a major cause of air pollution in Beijing but have decreased sharply under the Air Pollution Prevention and Control Action Plan launched in 2013. In this study, four years of observations of wet deposition have been conducted using a sequential sampling technique to investigate the detailed variation in chemical components through each rainfall event. We find that the major ions, SO42−, Ca2+, NO3− and NH4+, show significant decreases over the 2013–2017 period (decreasing by 39 %, 35 %, 12 % and 25 %, respectively), revealing the impacts of the Action Plan. An improved sequential sampling method is developed and implemented to estimate the contribution of below-cloud and in-cloud wet deposition over the four-year period. Overall, below-cloud scavenging accounts for between half and two thirds of wet deposition of the four major ions, with the highest contribution for NH4+ at 65 % and lowest for SO42- at 50 %. The contribution of below-cloud scavenging for Ca2+, SO42- and NH4+ decreases from above 50 % in 2014 to below 40 % in 2017. This suggests that the Action Plan has mitigated PM pollution in the surface layer and hence decreased scavenging due to the washout process. In contrast, we find little change in the annual volume weighted average concentration for NO3- where the contribution from below-cloud scavenging remains at ~44 % over the period 2015–2017. While highlighting the importance of different wet scavenging processes, this paper presents a unique new perspective on the effects of the Action Plan and clearly identifies oxidized nitrogen species as a major target for future air pollution controls

    DataSheet1_Spatio-temporal variation of PM2.5 pollution in Xinjiang and its causes: The growing importance in air pollution situation in China.docx

    No full text
    Due to the differences in topographic features, water vapor distribution and emission structures between the north and south of Xinjiang Uygur Autonomous Region (hereinafter Xinjiang), the air pollution exhibits remarkable spatial heterogeneity in this region. In this study, Xinjiang is divided into four regions from north to south at the municipality scale based on the data from air quality monitoring sites recorded from 2013–2019, namely, the clean area in the north of northern Xinjiang (region I), the heavily polluted area of the Urumqi-Changji-Shihezi region (region Ⅲ), the moderately polluted area in the north of southern Xinjiang (region Ⅱ), and the severely polluted area in the south of southern Xinjiang (region Ⅳ). For highly polluted regions in northern and southern Xinjiang, regions Ⅲ and Ⅳ are compared with those typical polluted regions in central and eastern China, and the spatio-temporal variation characteristics and the causes of PM2.5 pollution in each sub-region are discussed. The results show that the region Ⅲ is a typical area with anthropogenic air pollution source, where the occurrence frequency of PM2.5 pollution with the intensity of moderate level or above (18%) is higher than the most heavily polluted area in central and eastern China (16%, regions from the south of North China to the west of Huang-Huai). The region IV is a typical area affected by dust weather, where the pollution frequency being about 52% is much higher than that in other typical polluted regions. In addition, under the combined effects of anthropogenic sources and dust aerosols, the pollution duration in region II is prolonged. Therefore, in contrast to the remarkable improvement of air quality in central and eastern China, the air pollution in typical regions of Xinjiang has become relatively more severe in recent years. Moreover, as Xinjiang is in the upstream of the central and eastern China in the mid-latitude westerlies, the heavy pollution due to sand and dust, anthropogenic sources and their mixing effects has a far-reaching impact on the downstream areas, further highlighting the growing importance of pollution prevention and control in Xinjiang.</p

    Ammonia data and its related species measured and simulated in the megacity of Beijing during November to December of 2016

    No full text
    Atmospheric NH3 plays a vital role not only in the environmental ecosystem but also in atmosphere chemistry. To further understand the effects of NH3 on the formation of haze pollution in Beijing, ambient NH3 and related species were measured and simulated at high resolutions during the wintertime Air Pollution and Human Health-Beijing (APHH-Beijing) campaign in 2016. The excess NHx was calculated upon the equilibrium system of SO42--NO3--NH4+-water during this campaign. We applied ISORROPIA II model to calculate the aerosol acidity, aerosol water content (AWC) as well as its sensitivity to the SOx(SO2+SO42-),NOx(NO2+NO3-), NHx(NH3+NH4+) inputs. We also run the 3 D model NAQPMS to quantify the effects of NH3 to the heavy pollution in NCP. We found the Increased formation of NH4NO3 under excess NHx, especially during the nighttime, may trigger the decreasing of aerosol deliquescence relative humidity (DRH) even down to less than 50% and hence lead to hygroscopic growth even under RH conditions lower than 50% and the wet aerosol particles become better medium for rapid heterogeneous reactions. A further increase of RH promotes the positive feedback "AWC-heterogeneous reactions" and ultimately leads to the formation of severe haze. Modelling results by NAQPMS show the control of 20% NH3 emission may affect 5~11% of PM2.5 formation under current emissions conditions in the North China Plain (NCP)
    corecore