189 research outputs found

    The Effect of Exercise on Pulpal and Gingival Blood Flow in Physically Active and Inactive Subjects as Assessed by Laser Doppler

    Get PDF
    The effects of exercise on pulpal and gingival blood flow are undefined. The autonomic nervous system response suggests that they could increase or decrease with exercise, and they may be independent of each other. This study attempts to answer these questions

    The Changes of Skin Temperature on Hands and Feet During and after T3 Sympathicotomy for Palmar Hyperhidrosis

    Get PDF
    Unilateral thoracic sympathectomy in patients with palmar hyperhidrosis causes a skin temperature drop in the contralateral hand. A cross-inhibitory effect by the post-ganglionic neurons innervating hands is postulated as a mechanism of contralateral vasoconstriction. The purpose of our study was to evaluate whether this cross-inhibitory effect also occurs in the feet. Twenty patients scheduled for thoracoscopic sympathicotomy due to palmar hyperhidosis were studied. Right T3 sympathicotomy was performed first, followed by left T3 sympathicotomy. The thenar skin temperatures of both hands and feet were continuously monitored using a thermometer and recorded before induction of anesthesia, during the operation, 4 hr after and 1 week later. Following right T3 sympathicotomy, the skin temperature of the ipsilateral hand gradually increased, however the skin temperature of the contralateral hand gradually decreased. Immediately after bilateral sympathicotomy, the skin temperature differences between hands and feet increased, but these differences decreased 1 week later. Our results show that cross-inhibitory control may exist in feet as well as in the contralateral hand. Thus, the release of cross-inhibitory control following T3 sympathicotomy results in vasoconstriction and decrease of skin temperature on the contralateral hand and feet. One week later, however, the temperature balance on hands and feet recovers

    Assessment of pulpal vitality using laser speckle imaging

    Full text link
    BACKGROUND AND OBJECTIVE: The pulpal chamber of each tooth contains the vasculature necessary to maintain a viable tooth. A critical need exists to develop an objective, repeatable method to assess pulpal viability. We hypothesized that the existence of blood perfusion within the pulp can be determined with analysis of laser speckle imaging (LSI) patterns generated by transillumination of the tooth. STUDY DESIGN/MATERIALS AND METHODS: We used nine extracted human cuspids and incisors. A Tygon tube was inserted into a channel created within each tooth and Intralipid pumped through the tube in a controlled manner with a syringe infusion pump. We evaluated the feasibility of LSI for flow assessment using both transillumination and epiillumination imaging configurations. With the transillumination geometry, we also assessed the effect of the angle of incidence of the probe laser light on the speckle flow index (SFI) values extracted from the collected speckle images. RESULTS: Transillumination LSI, and not epiillumination LSI, enables differentiation between the absence and presence of perfusion in an in vitro tooth model. SFI values are insensitive to the relative angle of incidence of the laser light, over a wide range of angles. CONCLUSIONS: Our preliminary in vitro data suggest that transillumination LSI is a promising method to identify the presence of blood flow in the pulpal chamber. Future in vivo evaluation is warranted

    A Diagnostic Accuracy Study of Laser Doppler Flowmetry for the Assessment of Pulpal Status in Children's Permanent Incisor Teeth

    Get PDF
    Introduction: The aim of this study was to assess whether laser Doppler flowmetry is more accurate than the conventional pulp sensibility tests (electric pulp test and ethyl chloride) in assessing the pulpal status of permanent anterior teeth in children and to identify the laser Doppler flowmetry’s Flux cut-off threshold. Methods: A cross-sectional diagnostic accuracy study with randomization was performed and included 74 participants (8- to 16-year-old children). Participants had 1 maxillary central or lateral incisor with either a completed root canal treatment or an extirpated pulp and a contralateral tooth with vital pulp. Outcome measures included the sensitivity, specificity, and predictive values as well as the repeatability of all tests. Results: A significant difference between the Flux values for teeth with vital and non-vital pulps was found. The cut-off ratio for laser Doppler flowmetry was 0.6, yielding a sensitivity of 53% and a specificity of 33%, which were lower than the values of the electric pulp test (sensitivity = 83.8%–94.6% and specificity = 89.2%–97.6%) and ethyl chloride (sensitivity = 81.1%–91.9% and specificity = 73%–81.1%). The repeatability of laser Doppler flowmetry, electric pulp testing, and ethyl chloride were 0.85, 0.86, and 0.81, respectively. Conclusions: Laser Doppler flowmetry was unable to differentiate between teeth with vital and non-vital pulps. The results of this study showed that there was a high probability for false results. Further development of laser Doppler flowmetry in assessing pulpal blood flow would be required before it could be recommended for clinical use, especially in children

    The Use of PRV-Bartha to Define Premotor Inputs to Lumbar Motoneurons in the Neonatal Spinal Cord of the Mouse

    Get PDF
    The neonatal mouse has become a model system for studying the locomotor function of the lumbar spinal cord. However, information about the synaptic connectivity within the governing neural network remains scarce. A neurotropic pseudorabies virus (PRV) Bartha has been used to map neuronal connectivity in other parts of the nervous system, due to its ability to travel trans-neuronally. Its use in spinal circuits regulating locomotion has been limited and no study has defined the time course of labelling for neurons known to project monosynaptically to motoneurons.Here we investigated the ability of PRV Bartha, expressing green and/or red fluorescence, to label spinal neurons projecting monosynaptically to motoneurons of two principal hindlimb muscles, the tibialis anterior (TA) and gastrocnemius (GC). As revealed by combined immunocytochemistry and confocal microscopy, 24-32 h after the viral muscle injection the label was restricted to the motoneuron pool while at 32-40 h the fluorescence was seen in interneurons throughout the medial and lateral ventral grey matter. Two classes of ipsilateral interneurons known to project monosynaptically to motoneurons (Renshaw cells and cells of origin of C-terminals) were consistently labeled at 40 h post-injection but also a group in the ventral grey matter contralaterally. Our results suggest that the labeling of last order interneurons occurred 8-12 h after motoneuron labeling and we presume this is the time taken by the virus to cross one synapse, to travel retrogradely and to replicate in the labeled cells.The study establishes the time window for virally-labelling monosynaptic projections to lumbar motoneurons following viral injection into hindlimb muscles. Moreover, it provides a good foundation for intracellular targeting of the labeled neurons in future physiological studies and better understanding the functional organization of the lumbar neural networks

    Surfing the spectrum - what is on the horizon?

    Get PDF
    Diagnostic imaging techniques have evolved with technological advancements - but how far? The objective of this article was to explore the electromagnetic spectrum to find imaging techniques which may deliver diagnostic information of equal, or improved, standing to conventional radiographs and to explore any developments within radiography which may yield improved diagnostic data. A comprehensive literature search was performed using Medline, Web of Knowledge, Science Direct and PubMed Databases. Boolean Operators were used and key-terms included (not exclusively): terahertz, X-ray, ultraviolet, visible, infra-red, magnetic resonance, dental, diagnostic, caries and periodontal. Radiographic techniques are primarily used for diagnostic imaging in dentistry, and continued developments in X-ray imaging include: phase contrast, darkfield and spectral imaging. Other modalities have potential application, for example, terahertz, laser doppler and optical techniques, but require further development. In particular, infra-red imaging has regenerated interest with caries detection in vitro, due to improved quality and accessibility of cameras. Non-ionising imaging techniques, for example, infra-red, are becoming more commensurate with traditional radiographic techniques for caries detection. Nevertheless, X-rays continue to be the leading diagnostic image for dentists, with improved diagnostic potential for lower radiation dose becoming a reality
    • …
    corecore