26 research outputs found

    Étude expérimentale de micro-plasmas froids à la pression atmosphérique générés par des hautes tensions de formes différentes

    Get PDF
    Η παρούσα διδακτορική διατριβή αποσκοπεί στη μελέτη ψυχρού μικρο-πλάσματος ατμοσφαιρικής πίεσης παραγόμενου από αντιδραστήρες εκκένωσης διηλεκτρικού φράγματος που οδηγούνται από παλμική ή ημιτονοειδή υψηλή τάση. Για τη δημιουργία του πλάσματος, χρησιμοποιούνται διάφορα ευγενή αέρια όπως το ήλιο και το αργό (κύρια αέρια) καθώς και προσμείξεις αυτών με άζωτο κι οξυγόνο. Με αυτό τον τρόπο επιτυγχάνεται η παραγωγή δραστικών σωματιδίων αζώτου κι οξυγόνου (RNS και ROS, αντίστοιχα), ενώ ταυτόχρονα μελετάται η δυνατότητα βελτίωσης της χημικής δραστικότητα τους πλάσματος. Η τελευταία είναι σημαντική για διάφορες εφαρμογές (π.χ. χημική ενεργοποίηση επιφανειών, αδρανοποίηση κυττάρων, αναγέννηση ιστών, κ.α.). Το πλάσμα μελετάται εξετάζοντας τα διάφορα ηλεκτρικά κι οπτικά χαρακτηριστικά του συναρτήσει πρωταρχικών παραμέτρων κάθε συστήματος, δηλαδή το πλάτος της τάσης, τη συχνότητα λειτουργίας, τη ροή του αερίου, τη διαμόρφωση των ηλεκτροδίων και το λόγο κατάτμησης της τάσης στην περίπτωση παλμικής κυματομορφής. Έτσι, εκτιμάται η φυσικο-χημική δραστικότητα του πλάσματος, ενώ την ίδια στιγμή καταδεικνύονται οι φυσικοί μηχανισμοί παραγωγής του καθώς και τρόποι βελτιστοποίησης της χημείας του. Τέλος, δοκιμάζεται η αποδοτικότητα του παραγόμενου πλάσματος σε σχέση με βιο-ιατρικές εφαρμογές μέσω επεξεργασίας διαφορετικών βιολογικών συστημάτων (βακτήρια, λιποσώματα, κύτταρα) αποτρέποντας ταυτόχρονα θερμικές βλάβες.The present PhD thesis is devoted to the study of atmospheric pressure cold micro-plasmas produced in different Dielectric Barrier Discharge (DBD) reactors which are driven by pulsed or sinusoidal high voltages. Noble gases such as helium and argon are used as carrier gases, whereas admixtures with nitrogen and oxygen are studied as well. The formation of Reactive Nitrogen and Oxygen Species (RNS, ROS) is thus achieved, and the possibility of improving the chemical (re)activity of the plasmas is demonstrated. This is of interest in the treatment of inert or living materials (e.g. surface functionalization, cell inactivation, living tissue regeneration, etc.). Plasmas are characterized by recording electrical and optical features as a function of principal operational parameters, including voltage amplitude and frequency, gas flow rate, electrode configuration, and voltage duty cycle in the case of pulsed waveform. The physico-chemical (re)activity of the plasmas is thus evaluated, while at the same time mechanisms on the plasma generation and paths for chemistry optimization are unveiled. Finally, the efficiency of the plasma in relation to biomedical applications is tested by treating different biological systems (bacteria, liposomes, cells) while preventing any thermal effect.Cette thèse porte sur l'étude de micro-plasmas froids à la pression atmosphérique générés à partir de différents réacteurs des configurations basées sur le principe des Décharges à Barrière Diélectrique (DBD) et alimentés par des générateurs de tension impulsionnelle et sinusoïdale. Les plasmas sont formés dans des gaz nobles tels que l'hélium et l'argon (gaz vecteurs), et également dans des mélanges réalisés avec des gaz moléculaires tels que l'azote et l'oxygène afin de produire des Espèces Réactives de l’Azote et de l’Oxygène (ERA, ERO). La (ré)activité chimique du plasma est ainsi supposée être accrue, permettant le traitement de matériaux inertes ou vivants pour diverses applications (fonctionnalisation de surfaces, inactivation de cellules, régénération de tissus vivants, etc.). La caractérisation des plasmas étudiés est réalisée en enregistrant les aspects électriques et optiques en fonction des paramètres élémentaires, comme l’amplitude et la fréquence de la tension, le débit du gaz, la configuration des électrodes, et le rapport cyclique dans le cas du régime pulsé. Ainsi, la (ré)activité chimique des plasmas est évaluée tandis que au même temps les mécanismes de la génération des plasmas et les façons de l’optimisation de la chimie sont dévoilées. Finalement, nous examinons l'efficacité du plasma dans le domaine biomédical en traitant divers systèmes biologiques (bactéries, liposomes, cellules) sans effets thermiques

    Influence of water vapour on the propagation speed and mean energy of an atmospheric non-equilibrium diffuse discharge in air

    Get PDF
    We report results on the influence of humidity on the propagation and the energy of a pin-to-plane nanosecond pulse discharge at atmospheric pressure. Water vapour only impacts discharges in saturated gas mixtures, for which propagation is first slowed down, but accelerates faster than usual close to the plane. Energy is unchange

    Experimental study of atmospheric pressure cold micro-plasmas generated by high voltages of different waveforms

    No full text
    Cette thèse porte sur l'étude de micro-plasmas froids à la pression atmosphérique générés à partir de différents réacteurs des configurations basées sur le principe des Décharges à Barrière Diélectrique (DBD) et alimentés par des générateurs de tension impulsionnelle et sinusoïdale. Les plasmas sont formés dans des gaz nobles tels que l'hélium et l'argon (gaz vecteurs), et également dans des mélanges réalisés avec des gaz moléculaires tels que l'azote et l'oxygène afin de produire des Espèces Réactives de l’Azote et de l’Oxygène (ERA, ERO). La (ré)activité chimique du plasma est ainsi supposée être accrue, permettant le traitement de matériaux inertes ou vivants pour diverses applications (fonctionnalisation de surfaces, inactivation de cellules, régénération de tissus vivants, etc.). La caractérisation des plasmas étudiés est réalisée en enregistrant les aspects électriques et optiques en fonction des paramètres élémentaires, comme l’amplitude et la fréquence de la tension, le débit du gaz, la configuration des électrodes, et le rapport cyclique dans le cas du régime pulsé. Ainsi, la (ré)activité chimique des plasmas est évaluée tandis que au même temps les mécanismes de la génération des plasmas et les façons de l’optimisation de la chimie sont dévoilées. Finalement, nous examinons l'efficacité du plasma dans le domaine biomédical en traitant divers systèmes biologiques (bactéries, liposomes, cellules) sans effets thermiques.The present PhD thesis is devoted to the study of atmospheric pressure cold micro-plasmas produced in different Dielectric Barrier Discharge (DBD) reactors which are driven by pulsed or sinusoidal high voltages. Noble gases such as helium and argon are used as carrier gases, whereas admixtures with nitrogen and oxygen are studied as well. The formation of Reactive Nitrogen and Oxygen Species (RNS, ROS) is thus achieved, and the possibility of improving the chemical (re)activity of the plasmas is demonstrated. This is of interest in the treatment of inert or living materials (e.g. surface functionalization, cell inactivation, living tissue regeneration, etc.). Plasmas are characterized by recording electrical and optical features as a function of principal operational parameters, including voltage amplitude and frequency, gas flow rate, electrode configuration, and voltage duty cycle in the case of pulsed waveform. The physico-chemical (re)activity of the plasmas is thus evaluated, while at the same time mechanisms on the plasma generation and paths for chemistry optimization are unveiled. Finally, the efficiency of the plasma in relation to biomedical applications is tested by treating different biological systems (bacteria, liposomes, cells) while preventing any thermal effect

    Experimental study of atmospheric pressure cold micro-plasmas generated by high voltages of different waveforms

    No full text
    The present PhD thesis is devoted to the study of atmospheric pressure cold micro-plasmas produced in different Dielectric Barrier Discharge (DBD) reactors which are driven by pulsed or sinusoidal high voltages. Noble gases such as helium and argon are used as carrier gases, whereas admixtures with nitrogen and oxygen are studied as well. The formation of Reactive Nitrogen and Oxygen Species (RNS, ROS) is thus achieved, and the possibility of improving the chemical (re)activity of the plasmas is demonstrated. This is of interest in the treatment of inert or living materials (e.g. surface functionalization, cell inactivation, living tissue regeneration, etc.). Plasmas are characterized by recording electrical and optical features as a function of principal operational parameters, including voltage amplitude and frequency, gas flow rate, electrode configuration, and voltage duty cycle in the case of pulsed waveform. The physico-chemical (re)activity of the plasmas is thus evaluated, while at the same time mechanisms on the plasma generation and paths for chemistry optimization are unveiled. Finally, the efficiency of the plasma in relation to biomedical applications is tested by treating different biological systems (bacteria, liposomes, cells) while preventing any thermal effect.Η παρούσα διδακτορική διατριβή αποσκοπεί στη μελέτη ψυχρού μικρο-πλάσματος ατμοσφαιρικής πίεσης παραγόμενου από αντιδραστήρες εκκένωσης διηλεκτρικού φράγματος που οδηγούνται από παλμική ή ημιτονοειδή υψηλή τάση. Για τη δημιουργία του πλάσματος, χρησιμοποιούνται διάφορα ευγενή αέρια όπως το ήλιο και το αργό (κύρια αέρια) καθώς και προσμίξεις αυτών με άζωτο κι οξυγόνο. Με αυτό τον τρόπο επιτυγχάνεται η παραγωγή δραστικών σωματιδίων αζώτου κι οξυγόνου (RNS και ROS, αντίστοιχα), ενώ ταυτόχρονα μελετάται η δυνατότητα βελτίωσης της χημικής δραστικότητας τους πλάσματος. Η τελευταία είναι σημαντική για διάφορες εφαρμογές (π.χ. χημική ενεργοποίηση επιφανειών, αδρανοποίηση κυττάρων, αναγέννηση ιστών, κ.α.). Το πλάσμα μελετάται εξετάζοντας τα διάφορα ηλεκτρικά κι οπτικά χαρακτηριστικά του συναρτήσει των πρωταρχικών παραμέτρων κάθε συστήματος, δηλαδή το πλάτος της τάσης, τη συχνότητα λειτουργίας, τη ροή του αερίου, τη διαμόρφωση των ηλεκτροδίων και το λόγο κατάτμησης της τάσης στην περίπτωση παλμικής κυματομορφής. Έτσι, εκτιμάται η φυσικο-χημική δραστικότητα του πλάσματος, ενώ την ίδια στιγμή καταδεικνύονται οι φυσικοί μηχανισμοί παραγωγής του καθώς και τρόποι βελτιστοποίησης της χημείας του. Τέλος, δοκιμάζεται η αποδοτικότητα του παραγόμενου πλάσματος σε σχέση με βιο-ιατρικές εφαρμογές μέσω επεξεργασίας διαφορετικών βιολογικών συστημάτων (βακτήρια, λιποσώματα, κύτταρα) αποτρέποντας ταυτόχρονα θερμικές βλάβες

    Electrical, Thermal and Optical Parametric Study of Guided Ionization Waves Produced with a Compact μs-Pulsed DBD-Based Reactor

    No full text
    Atmospheric pressure guided ionization waves (GIWs) that are driven by ns/μs-pulsed high voltages, are promising tools in the biomedical field allowing for the effective production of reactive species and metastables without thermal damages of the specimens that are exposed. In most cases, plasma is produced in noble gases using dielectric barrier discharge (DBD) devices of more-or-less sophisticated geometries. In this study, a compact low-cost DBD reactor of very simple geometry is presented. It is fed with pure helium and driven by positive μs-pulsed high voltage (amplitude: 4.5–8 kV, pulse width: 1–10 μs) of audio frequencies (5–20 kHz), while it operates consistently for long time periods in a wide range of conditions. The produced plasma exhibits propagation lengths up to 4 cm and rich chemical reactivity is established outside the reactor, depending on the device’s experimental parameters. Besides, the dielectric tube’s temperature during plasma operation is an important factor, which is linked to the plasma characteristics. This temperature and its variations are thoroughly investigated herein, along with GIWs electrical features versus the electrical parameters of the pulsed power supply. Accordingly, it is demonstrated that not all of the operational windows are adequate for thermal-free operation and suitable operating conditions of this system are proposed for diverse applications, such as biomedical (low gas temperature is a prerequisite) and surface treatments of solid materials (low temperatures are not required)

    Acinetobacter baumannii Deactivation by Means of DBD-Based Helium Plasma Jet

    No full text
    Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and it is becoming increasingly important as a hospital-associated (nosocomial) infection. It has also been isolated from environmental soil and water samples. In this work, unlike conventional medical methods like antibiotics, the influence of atmospheric-pressure cold plasma on this bacterium is evaluated by means of a colony count technique and scanning electron microscopy. The plasma used here refers to streamers axially propagating into a helium channel penetrating the atmospheric air. The plasma is probed with high resolution optical emission spectroscopy and copious reactive species are unveiled under low-temperature conditions. Based on the experimental results, post-treatment (delayed) biochemical effects on Acinetobacter baumannii and morphological modifications appear dominant, leading to complete deactivation of this bacterium

    Clindrical SDBD of well-defined expansion area for standardised studies

    No full text
    The present work lies in the field of atmospheric-pressure surface dielectric-barrier discharges (SDBDs).A tailored experimental cylindrical setup is presented, by which the SDBD expansion area is well defined,avoiding any underside discharge. Preliminary electrical and optical emission results are reporte

    Clindrical SDBD of well-defined expansion area for standardised studies

    No full text
    The present work lies in the field of atmospheric-pressure surface dielectric-barrier discharges (SDBDs).A tailored experimental cylindrical setup is presented, by which the SDBD expansion area is well defined,avoiding any underside discharge. Preliminary electrical and optical emission results are reporte

    Combined anti-angiogenic and cytotoxic treatment of a solid tumour: in silico investigation of a xenograft animal model’s digital twin

    No full text
    Anti-angiogenic (AA) treatments have received significant research interest due to the key role of an-giogenesis in cancer progression. AA agents can have a strong effect on cancer regression, by blockingnew vessels and reducing the density of the existing vasculature. Moreover, in a process termed vascularnormalisation, AA drugs can improve the abnormal structure and function of the tumour vasculature,enhancing the delivery of chemotherapeutics to the tumour site. Despite their promising potential, animproved understanding of AA treatments is necessary to optimise their administration as a monotherapy orin combination with other cancer treatments. In this work we present anin silicomultiscale cancer modelwhich is used to systematically interrogate the role of individual mechanisms of action of AA drugs intumour regression. Focus is placed on the reduction of vascular density and on vascular normalisation througha parametric study, which are considered either as monotherapies or in combination with conventional/metronomic chemotherapy. The model is specified to data from a mammary carcinoma xenograft in im-munodeficient mice, to enhance the physiological relevance of model predictions. Our results suggest thatconventional chemotherapy might be more beneficial when combined with AA treatments, hindering tumourgrowth without causing excessive damage on healthy tissue. Notably, metronomic chemotherapy has shownsignificant potential in stopping tumour growth with minimal toxicity, even as a monotherapy. Our findingsunderpin the potential of ourin silicoframework for non-invasive and cost-effective evaluation of treatmentstrategies, which can enhance our understanding of combined therapeutic strategies and contribute towardsimproving cancer treatment management
    corecore