19 research outputs found

    Covalent functionalization of multi-walled carbon nanotubes with a gadolinium chelate for efficient T1-weighted magnetic resonance imaging

    Get PDF
    Given the promise of carbon nanotubes (CNTs) for photothermal therapy, drug delivery, tissue engineering, and gene therapy, there is a need for non-invasive imaging methods to monitor CNT distribution and fate in the body. In this study, non-ionizing whole-body high field magnetic resonance imaging (MRI) is used to follow the distribution of water-dispersible non-toxic functionalized CNTs administrated intravenously to mice. Oxidized CNTs are endowed with positive MRI contrast properties by covalent functionalization with the chelating ligand diethylenetriaminepentaacetic dianhydride (DTPA), followed by chelation to Gd. The structural and magnetic properties, MR relaxivities, cellular uptake, and application for MRI cell imaging of Gd-CNTs in comparison to the precursor oxidized CNTs are evaluated. Despite the intrinsic T contrast of oxidized CNTs internalized in macrophages, the anchoring of paramagnetic gadolinium onto the nanotube sidewall allows efficient T contrast and MR signal enhancement, which is preserved after CNT internalization by cells. Hence, due to their high dispersibility, Gd-CNTs have the potential to produce positive contrast in vivo following injection into the bloodstream. The uptake of Gd-CNTs in the liver and spleen is assessed using MRI, while rapid renal clearance of extracellular Gd-CNTs is observed, confirming the evidences of other studies using different imaging modalities

    Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway.

    Get PDF
    The in vivo fate and biodegradability of carbon nanotubes is still a matter of debate despite tremendous applications. In this paper we describe a molecular pathway by which macrophages degrade functionalized multi-walled carbon nanotubes (CNTs) designed for biomedical applications and containing, or not, iron oxide nanoparticles in their inner cavity. Electron microscopy and Raman spectroscopy show that intracellularly-induced structural damages appear more rapidly for iron-free CNTs in comparison to iron-loaded ones, suggesting a role of iron in the degradation mechanism. By comparing the molecular responses of macrophages derived from THP1 monocytes to both types of CNTs, we highlight a molecular mechanism regulated by Nrf2/Bach1 signaling pathways to induce CNT degradation via NOXjournal article2017 Jan 252017 01 25importe

    Covalent functionalization of multi-walled carbon nanotubes with a gadolinium chelate for efficient T1-weighted magnetic resonance imaging

    No full text
    Given the promise of carbon nanotubes (CNTs) for photothermal therapy, drug delivery, tissue engineering, and gene therapy, there is a need for non-invasive imaging methods to monitor CNT distribution and fate in the body. In this study, non-ionizing whole-body high field magnetic resonance imaging (MRI) is used to follow the distribution of water-dispersible non-toxic functionalized CNTs administrated intravenously to mice. Oxidized CNTs are endowed with positive MRI contrast properties by covalent functionalization with the chelating ligand diethylenetriaminepentaacetic dianhydride (DTPA), followed by chelation to Gd. The structural and magnetic properties, MR relaxivities, cellular uptake, and application for MRI cell imaging of Gd-CNTs in comparison to the precursor oxidized CNTs are evaluated. Despite the intrinsic T contrast of oxidized CNTs internalized in macrophages, the anchoring of paramagnetic gadolinium onto the nanotube sidewall allows efficient T contrast and MR signal enhancement, which is preserved after CNT internalization by cells. Hence, due to their high dispersibility, Gd-CNTs have the potential to produce positive contrast in vivo following injection into the bloodstream. The uptake of Gd-CNTs in the liver and spleen is assessed using MRI, while rapid renal clearance of extracellular Gd-CNTs is observed, confirming the evidences of other studies using different imaging modalities

    Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents

    No full text
    In the pursuit of optimized magnetic nanostructures for diagnostic and therapeutic applications, the role of nanoparticle architecture has been poorly investigated. In this study, we demonstrate that the internal collective organization of multi-core iron oxide nanoparticles can modulate their magnetic properties in such a way as to critically enhance their hyperthermic efficiency and their MRI <i>T</i><sub>1</sub> and <i>T</i><sub>2</sub> contrast effect. Multi-core nanoparticles composed of maghemite cores were synthesized through a polyol approach, and subsequent electrostatic colloidal sorting was used to fractionate the suspensions by size and hence magnetic properties. We obtained stable suspensions of citrate-stabilized nanostructures ranging from single-core 10 nm nanoparticles to multi-core magnetically cooperative 30 nm nanoparticles. Three-dimensional oriented attachment of primary cores results in enhanced magnetic susceptibility and decreased surface disorder compared to individual cores, while preserving a superparamagnetic-like behavior of the multi-core structures and potentiating thermal losses. Exchange coupling in the multi-core nanoparticles modifies the dynamics of the magnetic moment in such a way that <i>both</i> the longitudinal and transverse NMR relaxivities are also enhanced. Long-term MRI detection of tumor cells and their efficient destruction by magnetic hyperthermia can be achieved thanks to a facile and nontoxic cell uptake of these iron oxide nanostructures. This study proves for the first time that cooperative magnetic behavior within highly crystalline iron oxide superparamagnetic multi-core nanoparticles can improve simultaneously therapeutic and diagnosis effectiveness over existing nanostructures, while preserving biocompatibility

    Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia

    No full text
    The current challenge in the field of nano-medicine is the design of multifunctional nano-objects effective both for the diagnosis and treatment of diseases. Here, dendronized FeO1-x@Fe3-xO4 nanoparticles with spherical, cubic, and octopode shapes and oxidized Fe3-xO4 nanocubes have been synthesized and structurally and magnetically characterized. Strong exchange bias properties are highlighted in core shell nanoparticles (NPs) due to magnetic interactions between their antiferromagnetic core and ferrimagnetic shell. Both in vitro relaxivity measurements and nuclear magnetic resonance (NMR) distribution profiles have confirmed the very good in vitro magnetic resonance imaging (Mm) properties of core shell and cubic shape NPs, especially at low concentration. This might be related to the supplementary anisotropy introduced by the exchange bias properties and the cubic shape. The high heating values of core shell NPs and oxidized nanocubes at low concentration are attributed to dipolar interactions inducing different clustering states, as a function of concentration. In vivo MRI studies have also evidenced a clustering effect at the injection point, depending on the concentration, and confirmed the very good in vivo MRI properties of core shell NPs and oxidized nanocubes in particular at low concentration. These results show that these core shell and cubic shape dendronized nano-objects are very suitable to combine MRI and hyperthermia properties at low injected doses

    Design of Covalently Functionalized Carbon Nanotubes Filled with Metal Oxide Nanoparticles for Imaging, Therapy, and Magnetic Manipulation

    No full text
    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs
    corecore