63 research outputs found

    Networking strategies in streptomyces coelicolor

    Get PDF
    We are interested the soil dwelling bacteria Streptomyces coelicolor because its cells grow end to end in a line. New branches have the potential to extend from any point along this line and the result is a network of branches and connections. This is a novel form of colonisation in the bacterial world and it is advantageous for spreading through an environment resourcefully. Networking protocols for communication technologies have similar pressures to be resourceful in terms of time, computing power, and energy. In this preliminary investigation we design a computer model of the biological system to understand its limitations and strategies for survival. The decentralised capacity for organisation of both the bacterial system and the model reflects well on the now-popular conventions for path finding and ad hoc network building in human technologies. The project will ultimately become a comparison of strategies between nature and the man-made

    Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom

    Get PDF
    Prevalence of three sulfonamide resistance genes, sul1, sul2 and sul3 and sulfachloropyridazine (SCP) resistance was determined in bacteria isolated from UK manured agricultural clay soils and slurry samples, over a two year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline (OTC) was used for manuring. Sul gene positive isolates were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in pig slurry and post application soil than in pre-application soil. Of 5isolates, 23 % carried sul1, 18 % sul2 and 9 % sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5 % and 11.7 % of sul positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8 % of sul1 positive isolates carried the intI1 gene. Sulfonamide resistant pathogens were identified in slurry amended soil and soil leachate, including Shigella flexneri, Aerococcus spp. and Acinetobacter baumanni, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotype sul1, sul2 and sul3 outside the Enterobacteriacae, and in the soil environment

    Environmental monitoring of Mycobacterium bovis in badger feces and badger sett soil by real-time PCR, as confirmed by immunofluorescence, immunocapture, and cultivation

    Get PDF
    Real-time PCR was used to detect and quantify Mycobacterium bovis cells in naturally infected soil and badger faeces. Immunomagnetic capture, immunofluorescence and selective culture confirmed species identification and cell viability. These techniques will prove useful for monitoring M. bovis in the environment and for elucidating transmission routes between wildlife and cattle

    Integron prevalence and diversity in manured soil

    Get PDF
    Integron abundance and diversity were studied in soil amended with pig slurry. Real-time PCR illustrated a significant increase in class 1 integron prevalence post slurry-application with increased prevalence still evident at 10 months post-application. Culture dependent data revealed 10 genera, including putative human pathogens, carrying class 1 and 2 integrons

    Is it safe to go back into the water? A systematic review and meta-analysis of the risk of acquiring infections from recreational exposure to seawater

    Get PDF
    Background: Numerous illnesses are associated with bathing in natural waters, although it is assumed that the risk of illness among bathers exposed to relatively clean waters found in high-income countries is negligible. A systematic review was carried out to quantify the increased risk of experiencing a range of adverse health outcomes among bathers exposed to coastal water compared with non-bathers. Methods: In all 6919 potentially relevant titles and abstracts were screened, and from these 40 studies were eligible for inclusion in the review. Odds ratios (OR) were extracted from 19 of these reports and combined in random-effect meta-analyses for the following adverse health outcomes: incident cases of any illness, ear infections, gastrointestinal illness and infections caused by specific microorganisms. Results: There is an increased risk of experiencing symptoms of any illness [OR = 1.86, 95% confidence interval (CI): 1.31 to 2.64, P = 0.001] and ear ailments (OR = 2.05, 95% CI: 1.49 to 2.82, P < 0.001) in bathers compared with non-bathers. There is also an increased risk of experiencing gastrointestinal ailments (OR = 1.29, 95% CI: 1.12 to 1.49, P < 0.001). Conclusions: This is the first systematic review to evaluate evidence on the increased risk of acquiring illnesses from bathing in seawater compared with non-bathers. Our results support the notion that infections are acquired from bathing in coastal waters, and that bathers have a greater risk of experiencing a variety of illnesses compared with non-bathers

    Performance of a non-invasive test for detecting mycobacterium bovis shedding in European badger (meles meles) populations

    Get PDF
    The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, in cattle herds in the United Kingdom is increasing, resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir and is the subject of control measures aimed at reducing incidence in cattle populations. Understanding the epidemiology of M. bovis in badger populations is essential to direct control interventions and understand disease spread; however, accurate diagnosis in live animals is challenging and currently uses invasive methods. Here we present a non-invasive diagnostic procedure and sampling regime using field sampling of latrines and detection of M. bovis with qPCR, the results of which strongly correlate with the results of immunoassay testing in the field at the social group level. This method allows M. bovis infection in badger populations to be monitored without trapping and provides additional information on the quantity of bacterial DNA shed. Our approach may therefore provide valuable insights into the epidemiology of bovine tuberculosis in badger populations and inform disease control interventions

    The variability and seasonality of the environmental reservoir of Mycobacterium bovis shed by wild European badgers

    Get PDF
    The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, has been increasing in UK cattle herds resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir of infection. One likely route of transmission to cattle is through exposure to infected badger urine and faeces. The relative importance of the environment in transmission remains unknown, in part due to the lack of information on the distribution and magnitude of environmental reservoirs. Here we identify potential infection hotspots in the badger population and quantify the heterogeneity in bacterial load; with infected badgers shedding between 1 × 103 − 4 × 105 M. bovis cells g−1 of faeces, creating a substantial and seasonally variable environmental reservoir. Our findings highlight the potential importance of monitoring environmental reservoirs of M. bovis which may constitute a component of disease spread that is currently overlooked and yet may be responsible for a proportion of transmission amongst badgers and onwards to cattle

    Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance

    Get PDF
    Background: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. Objective: We examined possible approach

    Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19

    Get PDF
    The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102–105 gc/ml) and feces (ca. 102–107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105–1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector

    Water and sanitation: an essential battlefront in the war on antimicrobial resistance

    Get PDF
    Water and sanitation represent a key battlefront in combatting the spread of antimicrobial resistance (AMR). Basic water sanitation infrastructure is an essential first step towards protecting public health, thereby limiting the spread of pathogens and the need for antibiotics. AMR presents unique human health risks, meriting new risk assessment frameworks specifically adapted to water and sanitation-borne AMR. There are numerous exposure routes to AMR originating from human waste, each of which must be quantified for its relative risk to human health. Wastewater treatment plants play a vital role in centralized collection and treatment of human sewage, but there are numerous unresolved issues in terms of the microbial ecological processes occurring within them and the extent to which they attenuate or amplify AMR. Research is needed to advance understanding of the fate of resistant bacteria and antibiotic resistance genes in various waste management systems, depending on the local constraints and intended reuse applications. World Health Organization and national AMR action plans would benefit from a more holistic 'One Water' understanding. In this article we provide a framework for research, policy, practice and public engagement aimed at limiting the spread of AMR from water and sanitation in low-, medium- and high-income countries
    corecore