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Abstract

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted
via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of
gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and
whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment
plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48
independent studies revealed that severe GI dysfunction is only evident in a small number of
COVID-19 cases, with 11 = 2% exhibiting diarrhea and 12 + 3% exhibiting vomiting and nausea.
In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic,
mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic
period and can persist for several weeks, but with declining abundances in the post-symptomatic
phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more
frequent. The abundance of the virus genetic material in both urine (ca. 1010 ge/ml) and feces
(ca. 10%-107 ge/ml) is much lower than in nasopharyngeal fluids (ca. 10°-10"" gc/ml). There is
strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally
been recovered from both urine and stool samples. The level and infectious capability of SARS-
CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral
route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or
urine appears lower due to the lower relative amounts of virus present in feces/urine. The biggest
risk of transmission will occur in clinical and care home settings where secondary handling of
people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be
detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis
also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g.
swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on

very low predicted abundances and limited environmental survival of SARS-CoV-2. These
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conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred

globally, but exposure to feces or wastewater has never been implicated as a transmission vector.

Keywords: bathing waters, coronavirus, faecal-oral route, infection risk, sanitation, waterborne

illness

1. Introduction

In recent years, several viral epidemics have impacted human populations, resulting in substantial
morbidity, mortality and a negative impact on the global economy [e.g. Zika virus (ZIKV), Ebola
virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East
respiratory syndrome coronavirus (MERS-CoV)](Peckham, 2013; Watkins, 2018). Of these,
respiratory viruses such as coronaviruses (CoV) have proven particularly problematic to control due
to their ease of human-to-human transmission and wide range of primary and secondary animal
reservoirs (Assiri et al., 2013; Damas et al., 2020). They were also recently highlighted by the
World Health Organization in 2018 as priority areas for research given their potential to cause a
public health emergency and the absence of efficacious drugs and/or vaccines (WHO, 2018). To
date, seven human coronaviruses (HCoV) have been identified that can induce a range of
respiratory symptoms with variable case fatality rates. These include the circulating seasonal
HCoVs (i.e. higher winter prevalence) that are generally considered to cause mild respiratory
symptoms (aCoVs; HCoV-229E and HCoV-NL63, B-CoVs; HCoV-HKU1 and HCoV-OC43),
through to novel CoVs that lead to severe and potentially fatal respiratory tract infections (B-CoVs;
SARS-CoV-1, MERS-CoV and SARS-CoV-2)(Gaunt et al., 2010; Guo et al., 2020a; Pfefferle et
al., 2011). The novel Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, presents
with a range of respiratory symptoms which, in an estimated 14-17% of cases, leads to severe or

critical disease such as severe pneumonia or acute respiratory distress syndrome (ARDS)(Petrosillo
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et al., 2020; Wu and McGoogan, 2020; Docherty et al., 2020). Although SARS-CoV-2 belongs to
the same B-CoV genus as the CoVs responsible for the severe acute respiratory syndrome (SARS;
caused by SARS-CoV) and Middle East respiratory syndrome (MERS; caused by MERS-CoV),
this newly emerged virus tends to be associated with milder infections. For example, depending on
the country, case fatality rates from COVID-19 have been estimated to be ca. 1-5%, significantly
lower than the death rates for SARS (9.5%) and MERS (35%)(Wu and McGoogan, 2020; De Wit et
al., 2016; Rajgor et al., 2020; CDC, 2020). In addition, SARS and MERS are predominantly
associated with nosocomial spread, whereas SARS-CoV-2 is much more widely transmitted in the
community, particularly in places with high population densities such as overcrowded housing,
industrial processing plants, elderly care homes, and prisons (Abrams et al., 2020; Cloud et al.,
2020; Franco-Paredes et al, 2020; Petrosillo et al., 2020; Razum et al., 2020; Waltenburg et al.,
2020).

Coronaviruses are enveloped, positively charged (at neutral pH), single-stranded viruses that
possess the largest genomes of all known RNA viruses (26.4 to 31.7 kb), giving them considerable
plasticity to accommodate, acquire and modify genes, enabling jumps between animal hosts (Woo
et al., 2010; Perlman and Netland, 2009). This is mainly evidenced by the observed spillover of
SARS, MERS and now SARS-CoV-2, the emergence of new variants of SARS-CoV-2 and thus the
possibility for antigenic drift (Koyama et al., 2020). The genome size of SARS-CoV-2 lies at the
upper end of the coronavirus range (29.9 kB), encoding a total of 11 genes with 11 open reading
frames (Yoshimoto, 2020). The direct ancestor of SARS-CoV-2 appears to have been circulating
unnoticed for decades in bats and subsequently transmitted to pangolins and then humans (Boni et
al., 2020). SARS-CoV-2 is 96.2% identical to the bat CoV RaTG13, and is far more distantly
related to both SARS-CoV-1 (79.5% identity) and MERS-CoV (50% identity) (Guo et al., 2020a;
Paraskevis et al., 2020; Rabaan et al., 2020; Andersen et al., 2020). The genetic differences between

SARS-CoV-1 and SARS-CoV-2 (380 amino acid substitutions) are largely clustered in non-
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structural protein genes; however, 27 mutations also are present in genes encoding the viral spike
protein S responsible for receptor binding and cell entry. These differences have resulted in
contrasting patterns of human infection (e.g. antigen detection) and replication compared with both
SARS-CoV-1 and MERS-CoV. Consequently, the use of past studies on SARS-CoV-1 and MERS-
CoV to explain the transmission and environmental behaviour of SARS-CoV-2 should be done
with caution. Although SARS-CoV-2 is thought to be largely spread by the inhalation of
contaminated respiratory droplets or via contact with fomites, the fecal-oral route also has been
suggested in its spread due to the fact that infected persons can shed SARS-CoV-2 RNA in bodily
fluids (e.g. feces and to a lesser extent urine; Peng et al., 2020a; Zhang et al., 2020). However,
considerable debate exists about the relative importance of this pathway, partially because a
comprehensive review does not yet exist.

Here we critically assess current and previous available evidence on (i) gastrointestinal (GI)
symptoms associated with COVID-19, (ii) the behavior of SARS-CoV-2 in the GI tract, (iii) the
abundance of SARS-CoV-2 in feces and urine, (iv) the evidence that SARS-CoV-2 remains
infectious after release from the body, and (v) whether feces and urine in sanitary environments,

sewage systems and wastewater consequently pose a risk to human health.

2. Proportion of COVID-19 cases showing gastrointestinal symptoms

Patients infected with SARS-CoV-2 typically exhibit a wide range of symptoms including fever,
coughing, dyspnea, sore throat and headaches. In addition, GI symptoms including nausea,
vomiting, loss of appetite, diarrhea, and abdominal pain have been reported (Lo et al., 2020;
Adhikari et al., 2020). GI problems are also observed in other acute respiratory infections (e.g.
influenza viruses, human rhinoviruses) and have been reported as a very common symptom of

severe influenza in children (Poole et al., 2020). In some cases, this is due to co-infections with
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other organisms, but is frequently due to simultaneous viral replication in multiple organs,

including the GI tract (Minodier et al., 2017; Rovida et al., 2013).

Most reports on the symptoms of COVID-19 are derived from clinical cases. From these,
however, the number, range and severity of symptoms associated with COVID-19 can vary largely
from person to person. Overall, our analysis of the symptoms from 48 independently published
studies involving thousands of individuals has shown that a small, but significant number of
patients experience gastrointestinal problems. Incidence of GI complaints, vomiting and diarrhea is
similar to SARS-CoV-1 and MERS-CoV (Rabaan et al., 2020; Kanwar et al., 2017). Current
evidence also suggests that rates of GI symptoms from SARS-CoV-2 are comparable in both
children and adults in symptomatic cases. However, it should be noted that there is a greater
proportion of asymptomatic carriage and mild infections in children in comparison to adults (Dong
et al., 2020; Wang et al., 2020a). Further, other studies suggest the incidence of diarrhea is greatest
in severely ill patients, while abdominal pain and vomiting are not (Yang et al., 2020; Tian et al.,
2020). Our analysis suggests that, on average, the number of hospitalized cases experiencing
diarrhea is 11% =+ 2% while those exhibiting vomiting and nausea is 12% = 3% (mean + SEM, n =
48 independent studies). It is unknown from the reported data to what extent these symptoms co-
occur. In a rare number of cases, diarrhea has been shown to be the only COVID-19 symptom,
making these cases very difficult to diagnose (Li et al., 2020a; Taxonera et al., 2020). Although
there are reports of renal organ failure from SARS-CoV-2 in severe infections (Martinez-Rojas et
al., 2020), there are fewer reports of urinary dysfunction as a result of infection (Prabhu et al.,
2020). It should be noted that injury to the renal system is common in COVID-19 cases, but that in
most individuals these effects are subclinical (Martinez-Rojas et al., 2020). Further, the data
presented in Figure 1 does not account for SARS-CoV-2 infections that are either asymptomatic or
very mild, and do not require hospitalization. Asymptomatic cases may account for ca. 40-45% of

SARS-CoV-2 infections, with the potential to transmit the virus for extended periods, possibly
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longer than 14 days (Oran and Topol, 2020). It is therefore likely the incidence of these symptoms
is greater than shown in Figure 1. This underreporting is common for gastrointestinal infections
(Fletcher et al., 2013; Gleizes et al., 2006). The variability in the data may also be associated with
different reporting criteria for each condition used in the different studies (Kwan et al., 2005).
Further, data may also be slightly confounded due to the administration of anti-viral drugs,
antibiotics and traditional and alternative medicines to patients that also induce diarrhea and
vomiting (Tian et al., 2020). Consequently, diarrhea in COVID-19 patients is not always associated
with SARS-CoV-2 and may explain why GI symptoms do not correlate well with the severity of
diseases or worse outcomes (Aguila et al., 2020; Cao et al., 2020). While self-reporting of SARS-
CoV-2 infection and symptoms has been used in some countries to capture mild cases of COVID-
19, these data have large uncertainties due to “hypochondriacal suspicion’ and the inclusion of
symptoms from other diseases also circulating in the population (Gong et al., 2020). For this
reason, this type of data was considered unreliable.

As evidenced from Figure 1, abdominal pain is a common symptom of COVID-19. The
extent to which this is directly due to viral infection of the GI tract or from general anxiety,
however, remains unknown. A range of studies have shown that the threat of contracting COVID-
19 can induce a range of somatic symptoms (e.g. sleep dysfunction, GI pain, headaches; Liu et al.,
2020a; Yuan et al., 2020; Shevlin et al., 2020). Somatic symptoms of nausea, vomiting, abdominal
pain and diarrhea are also known to be common in society. In some cases, the levels of these GI-
related symptoms in society are consistent with reports for symptom frequency in COVID-19 cases
(Haug et al., 2002a,b).

We conclude from our analysis that SARS-CoV-2 clearly causes gastrointestinal
dysfunction in a small, but substantial proportion of COVID-19 cases (ca. 5-20%). However, the

likelihood of prevalence could be much greater due to underreporting of mild infections. In
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addition, due to the prevalence of somatic symptoms, these symptoms should not be used as direct

evidence for actual GI infection.

3. Fecal shedding patterns of SARS-CoV-2

Consistent with the symptoms presented in Fig. 1, SARS-CoV-2 RNA has been routinely detected
in upper and lower respiratory tract fluids, sputum, saliva, stool, blood, and urine of infected
persons (Yan et al., 2020; Lu et al., 2020). The presence of the virus in feces appears to be similar
in patients both with and without GI symptoms (Lin et al., 2020). Overall, however, SARS-CoV-2
is mostly detected in respiratory tract samples (typical range 70-100%), to a lesser extent in stool
(typical range 30-60%), and rarely in urine (<5%)(Lo et al., 2020; Huang et al., 2020a; Kashi et al.,
2020). In a few cases, even though it cannot be detected in the upper respiratory tract, the virus can
be found in stools (Zhang et al., 2020b; Ling et al., 2020). However, in these cases the potential for
false-negatives cannot be discounted (Piras et al., 2020). This range of symptoms has led to
speculation that there are two different subtypes of COVID-19 manifestations referred to as “gut-
tropism” and “lung-tropism”, depending on where the virus enters the body (i.e. inhaled or
ingested) and becomes established, and thus where symptoms develop (Lo et al., 2020). There is no
evidence, however, to support this or that some strains of SARS-CoV-2 preferentially target the GI
tract in comparison to the respiratory tract (Iwasaki and Grubaugh, 2020).

Shedding of the virus in feces and in respiratory droplets may occur ca. 3-5 days before
other classic symptoms, such as fever or diarrhea manifest (i.e. pre-symptomatic; Buscarini et al.,
2020; Wang et al., 2020b; He et al., 2020a). Current evidence suggests that despite showing no
symptoms, asymptomatic, pre-symptomatic or post-symptomatic people may still be shedding the
virus at appreciable levels, although asymptomatic individuals may not shed it for as long or in as
high amounts as in severely infected individuals that require hospitalization (Lu et al., 2020; Su et

al., 2020a; Shen et al., 2020; Chau et al., 2020; Byrne et al., 2020). Critically, however, it is not
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well established whether viral loads are similar between asymptomatic, and mild, moderate, or
severe symptomatic cases, with conflicting reports present in the literature (Wang et al., 2020a; Lu
et al., 2020; He et al., 2020a; Liu et al., 2020b; Li et al., 2010b; Schwierzeck et al., 2020; Zou et al.,
2020). However, we note that if the viral loads are similar, the lack of coughing and diarrhea in
asymptomatic cases should lower the risk of disease transmission.

The information available so far from COVID-19 cases suggests the temporal dynamics of
viral shedding in feces follows a classic infection cycle pattern (i.e. rapid build-up phase followed
by a slow decline)(Sethuraman et al., 2020; Fig. 2). This is somewhat similar to that seen for
SARS-CoV-1 where the rate of viral shedding in feces is low in the first five days of illness, but
rises gradually to peak at days 9-14 with very high titers, often exceeding those of nasopharyngeal
aspirates (Cheng et al., 2004). However, unlike SARS-CoV-1, it is known that shedding and
transmission occurs with SARS-CoV-2 prior to symptom onset (Wei et al., 2020). In the case of
SARS-CoV-2, initial reports provide good evidence of the rapid accumulation of viral loads in
feces (Zhang et al., 2020b) and that it can be detected in stools of fecal-positive patients for at least
two weeks after the decline of symptoms (Pan et al., 2020b). Since these early reports, the amount
of fecal-positive cases in cohort-studies has been shown to be up to 75% of the total (Yan et al.,
2020). Critically, however, it suggests that not all COVID-19 infections result in pronounced fecal
shedding, consistent with the incidence of symptoms presented in Fig. 1. In addition, diarrhea is not
always associated with viral shedding (Young et al., 2020). Taking all the available evidence on the
temporal dynamics of viral shedding in feces suggests that shedding may occur for ca. five days
prior to symptoms developing, ca. one week prior to hospitalization, and then for two weeks after
symptoms have subsided (Lo et al., 2020; Byrne et al., 2020; Hosoda et al., 2020). Another
diagnostic feature of COVID-19 cases is that SARS-CoV-2 can often be found in stool samples
even after throat swabs appear negative in the post-symptomatic phase (Du et al., 2020a; Zhang et

al., 2020a; Gupta et al., 2020; Xu et al., 2020; Jiang et al., 2020). For example, the median (IQR)



224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

time of detectable viral RNA was 18.5 (13-22) days for throat swabs, 22 (18-27) days for sputum,
and 17 (11-32) days for stools (Fig. 2). In addition, viral loads in sputum and stool appear to decline
slower than in throat swabs, with the longest shedding period recorded at 59 days (Huang et al.,
2020b; Xiao et al., 2020b; Xu et al., 2020; Wu et al., 2020a). This has led to the suggestion that
detection of SARS-CoV-2 in stool samples should be used alongside testing of viral presence in
sputum and saliva samples (Ahamed Mim et al., 2020; Liu et al., 2020c; Ma et al., 2020; Mesoraca
et al., 2020). However, in the late stages of infection it is possible that SARS-CoV-2 in feces may
not be infectious and that RNA-based testing may result in unnecessary hospital bed-occupancy.
Critically, this is supported by Hua et al. (2020) who found no transmission from fecal-positive

children to family members.

4. Multiplication of SARS-CoV-2 in the gut

The evidence presented above has also led to the supposition that the fecal-oral route may be an
opportunity for transmission of SARS-CoV-2 (Xu et al., 2020), as suggested previously also for
SARS-CoV-1 and MERS-CoV (Yan et al., 2020). It is well established that stool samples contain
an abundance of viruses in the human body and are an integral part of the transmission pathway for
many pathogenic viruses (e.g. bocavirus, norovirus, rotavirus, astrovirus, sapovirus, adenovirus;
Rovida et al., 2013; Drosten et al., 2013). Of the estimated 1.4 billion cases of diarrhea worldwide
each year, viruses make up a considerable portion (Xie et al., 2013; Kotloff et al., 2019). Although
seasonal HCoVs only make up a small proportion of these cases in comparison to viruses such as
norovirus (NoV), rotavirus (RoV), rhinovirus (RhV) and adenovirus (AdV), it does imply that
SARS-CoV-2 is not unusual in inducing GI problems and this symptom may represent a part of its
infection cycle (Fig. 3) (Rovida et al., 2013; Drosten et al., 2013; Kheyami et al., 2010; Esper et al.,

2010; Risku et al., 2010).

10



248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

If sputum is swallowed, viral particles enveloped in mucus may pass down the GI tract in a
semi-protected state and avoid degradation by gastric acid and bile/pancreatic juices (Hirose et al.,
2017). This is likely to provide a primary route for infection of the GI tract, post-establishment of
the virus in the upper respiratory tract. In addition, SARS-CoV-2 contained in sputum and saliva
may also ultimately contribute to the viral load in feces, especially given the high viral load in these
fluids and the large amounts (ca. 1.0-1.5 1 person™) produced and swallowed per day (Rudney et al.,
1995; lorgulescu, 2009). Although SARS-CoV-2 has been detected in blood, the prevalence rates
are extremely low (ca. 1% of infections exhibit viremia; Lam et al., 2020), suggesting that this is
not a primary route of infection of GI tract tissues and is a secondary manifestation of COVID-19.
It is also possible that SARS-CoV-2 may reach the GI tract via contaminated food, however, there
are no documented cases of food-borne transmission of SARS-CoV-2 (Li et al., 2021). A rare
exception to this would be the handling and consumption of products from animals which have
contracted the virus. The widespread risk of this, however, is likely to be extremely low based on
evidence from previous SARS-CoV-1 and MERS-CoV outbreaks (Wang et al., 2005a; Todd, 2017;
Rahman and Sarkar, 2019).

There is reasonable evidence to suggest that SARS-CoV-2 can replicate in the GI tract.
Firstly, the GI tract contains an abundance of the metallopeptidase, angiotensin-converting enzyme
2 (ACE-2) which is the cell surface functional receptor (attachment site) for SARS-CoV-2 (Bertram
et al., 2012; Li et al., 2020c). Secondly, it has been shown in vitro that HCoVs and SARS-CoV-2
can infect cells from the respiratory, gastrointestinal, hepatic and central nervous systems. Studies
have indicated that SARS-CoV-2 has a 10-20 times greater affinity to ACE-2 receptors compared
to SARS-CoV-1, with a potentially lower infectious dose (Galbadage et al., 2020; He et al., 2020b).
It has been shown that the ACE-2 receptor protein is highly expressed not only in lung cells but
also in esophageal epithelial cells and absorptive enterocytes (epithelial cells) present in the

stomach, duodenum, ileum, colon and rectum (Xiao et al., 2020b; Li et al., 2020c; Zhang et al.,

11
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2020; Guo et al., 2020b; Zang et al., 2020). Further, ACE-2 mRNA transcripts have been reported
to be more abundant in intestinal cells than in lung tissues (Du et al., 2020b). Its expression in the
small intestine has also been found to increase with age suggesting that it may help explain the
increased severity of symptoms in eldery patients (Vuille-dit-Bille et al., 2020). The ACE-2
receptor is also present in the kidney and bladder, suggesting the potential for viral replication in
the urinary system (Du et al., 2020b; Li et al., 2020c; Martinez-Rojas et al., 2020) and potentially
explaining the subsequent recovery of SARS-CoV-2 in urine (Ling et al., 2020). This is supported
by autopsies of SARS-CoV-1 confirmed patients where presence of the virus has been
demonstrated in tubular epithelial cells (Diao et al., 2019; Su et al., 2020b). Gastrointestinal tissue
samples obtained from esophageal, esophageal non-lesion, gastric, duodenum and rectum mucosa
have also tested positive for the presence of SARS-CoV-2 in clinical cases (Xiao et al., 2020b).
Once in the GI tract, the spike (S) protein, which is abundant in the viral lipid membrane,
induces binding of the virus to the ACE-2 receptor on the host cell surface, the main point of cell
entry (Tian et al., 2020). The S glycoprotein has two key functional domains, S1 and S2. S1
contains the receptor-binding domain, which directly binds to the peptidase domain of ACE-2,
whereas S2 is responsible for binding to the cell membrane (Monkemiiller et al., 2020). These two
domains need to become physically separated to induce cell binding (i.e. activated). This process is
initially mediated by the host cell protein convertase, furin, which acts on the S1/S2 site to break
open the S protein structure to allow simultaneous binding to the ACE-2 receptor (via S1) and cell
membrane (via S2; Bestle et al., 2020). This activation process is further facilitated by the host’s
type Il transmembrane mucosa-specific serine protease (TMPRSS2) which acts on the S2” domain
to release the fusion peptide. TMPRSS?2 is highly expressed in the lung, kidney, bladder, small
intestine and colon relative to other tissues (Paniri et al., 2020). Fusion and subsequent entry of the
viral genetic material into the host cell then occurs (Fig. 4; Hoffmann et al., 2020; Monkemiiller et

al., 2020). Estimates suggest that this process takes from 10-15 min to complete (Ng et al., 2003).
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In addition to TMPRSS2, another mucosa-specific serine protease, TMPRSS4, also appears to
enhance fusogenic activity and viral entry into the host cell (Zang et al., 2020). Once inside the cell,
the uncoated viral RNA with 5' cap structure and 3’ poly (A) tail, acts like mRNA, facilitating rapid
translation of the replicase polyproteins (Pal et al., 2020). Once complete, viral replication
proceeds, followed by RNA packing and envelope packaging as described in detail elsewhere (Guo
et al., 2020a; Boopathi et al., 2020). The replicated virions are then released from the cell via
exocytosis (i.e. continual budding rather than cell bursting) back into the GI tract to infect other
cells (da Costa et al., 2020). This eclipse period (i.e. time taken from adsorption into the cell to the
subsequent release of infectious progeny) is estimated to be 7-8 hours (Harcourt et al., 2020;
Schneider et al., 2012). Although not known for SARS-CoV-2, based on other viruses, each cell
may produce up to 10%-10° virions (Hirano et al., 1976). Given the number of epithelial cells with
ACE-2 receptors in the GI tract, even a mild infection may therefore lead to a rapid multiplication
of SARS-CoV-2, with the potential to produce a high abundance of viral RNA in fecal matter. Once
released, however, the survival of these virions may be extremely low. For example, it has been
shown that vesicular stomatitis virus chimeras expressing SARS-CoV-2 spike protein are rapidly
inactivated by human colonic fluids with viral titers decreasing 100-fold in 1 hour (Zang et al.,
2020), however experiments using wild type SARS-CoV-2 are required to validate this finding.
That said, this may help to explain why the capacity to recover infectious virus from stool
specimens of COVID-19 patients is highly variable. It is also possible that transit time through the
GI tract (i.e. greater in diarrhea cases; Roy et al., 1991) and pre-existing GI conditions (e.g. Crohn’s
disease, ulcerative colitis; An et al., 2020) may influence viral recovery in feces. This potentially
poor survival contrasts with other human enteric viruses that primarily spread via the fecal-oral
route (e.g. norovirus, rotavirus) and which are capable of withstanding the harsh environment in the

GI tract, including the low pH of gastric fluids, bile and digestive enzymes in the small intestine
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and exposure to multiple bacterial by-products (Zang et al., 2020; Tung-Thompson et al., 2014)
(Table 1).

In mild COVID-19 infections, no significant damage to the mucous epithelium of
esophagus, stomach, duodenum and rectum cells has been reported (Xiao et al., 2020b). However,
it is also clear that severe infection can result in prolonged diarrhea and inflammation of the GI tract
in a significant proportion of clinical cases (Fig. 1). Although tissue and organ damage may be
precipitated by the body’s immune response to SARS-CoV-2 infection (leading to the ‘cytokine
storm’, viral sepsis and organ failure)(di Mauro Gabriella et al., 2020; Li et al., 2020d), it might
also be caused by direct viral attack of absorptive enterocytes which can induce diarrhea by
destroying the cells resulting in malabsorption, unbalanced intestinal secretion and activated enteric
nervous system (Tian et al., 2020; Zhang et al., 2020c). This is similar to that seen in porcine
epidemic diarrhea (corona)virus (PEDV) infections where widespread histopathological damage to
enterocytes occurs (Jung et al., 2014).

The role of the gut microbiome in the potential colonization of the GI tract by SARS-CoV-2
remains unknown. Evidence from the upper respiratory tract, however, suggests that some
commensal bacteria in the mucosal biofilm (e.g. Proteobacteria) express proteins which can bind to
the viral S-protein. This may prevent viral interactions with cell surface ACE-2 receptors and which
may help prevent severe infections from developing (i.e. bacterial decoys; Honarmand Ebrahimi,
2020). Whether this occurs in the GI tract remains unknown, however, it should be noted that the
overabundance of Proteobacteria in the GI tract is normally associated with dysbiosis (Shin et al.,
2015; Rizzatti et al., 2017). It should also be noted that microbial diversity in the GI tract decreases
with age, leading to suggestions that this may play a role in increased disease severity in elderly and
type-1I diabetic patients (Dhar and Mohanty, 2020; Gurung et al., 2020). It does suggest that further
investigations of the gut microbiome are needed to establish its role is viral infection and the

development of symptoms. Ultimately, this may also lead to the development of therapies to reduce
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the severity of COVID-19 (Kalantar-Zadeh et al., 2020). For example, fecal transplants have been
considered as a treatment for critically ill COVID-19 patients, however, the success of such
interventions remains unknown (Thalanayar Muthukrishnan and Faillace, 2020). Alternatively,
changes in diet and the use of probiotics/prebiotics have also been proposed as a strategy to build
immunity and reduce disease severity in the GI tract (Dhar and Mohanty, 2020; Ranjbar et al.,

2020).

5. Levels of SARS-CoV-2 in urine and feces

A range of PCR-based technologies (e.g. RT-qPCR, digital PCR) are available to quantify the
amount of SARS-CoV-2 RNA present in tissue, fluid and stool samples with very high sensitivity
(<10 gc in a sample). These assays typically target genes encoding the S, E and N structural
proteins, the RdRp gene which encodes the RNA-dependent RNA polymerase or the replicase
protein ORFlab gene (van Kasteren et al., 2020). These quantitative assays, however, also have
limitations that must be considered. For example, differences in sensitivity can occur depending on
the PCR primer and probe sets used (Jung et al., 2020; Pillonel et al., 2020). Poor sensitivity and
PCR inhibitors in fecal material (e.g. bile salts, lipids) may also lead to underestimation of viral
abundance, or the reporting of false negatives (Schrader et al., 2012). Loss of viral signal during
sample pre-treatment (e.g. heat inactivation) may also occur (Pan et al., 2020a). Further, the lack of
extraction controls (i.e. surrogate CoVs to look at viral recovery from the sample) may lead to
underestimates of viral abundance. The lack of standards has meant that only semi-quantitative
results (i.e. Ct values) have been reported in most early studies, especially those examining the
temporal dynamics of viral shedding. Lastly, these Ct values vary between platform, gene target
assay, and template concentrations used, which causes issues of comparability between studies
(Seong et al., 2016; Rahman et al., 2020). These issues seem to be most apparent in samples with

high Ct values (Ct > 34; Lowe et al., 2020). It is also important to state that quantification of viral
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RNA by RT-qPCR or digital PCR does not necessarily equate to infectious viral particles (Atkinson
and Petersen, 2020), as it is likely that a large proportion of viral particles are damaged during
passage through the GI tract and are thus non-infectious (Pfeiffer, 2010; Zhou et al., 2017; Zang et
al., 2020). Despite these limitations, there is strong evidence to suggest that feces contain high viral
RNA loads. For example, one study has shown that levels of SARS-CoV-2 RNA in stools can
range from 5.5 x 10% to 1.2 x 10° copies/ml (Pan et al., 2020b), while another has reported levels of
6 x 10° to 7 x 10° ge/ml in three patients (Zang et al., 2020) and two studies reporting fecal
shedding of up maximum of 1.0 x 10" ge/ml (Han et al., 2020; Wolfel et al., 2020). This wide
variation in fecal viral RNA load (10%-10" ge/ml) reflects differences in the severity of disease
between patients and also the temporal dynamics of the disease (To et al., 2020b). It should be
noted, however, that the abundance of SARS-CoV-2 RNA in feces are much lower than for other
non-enveloped enteric viruses, such as norovirus (ssRNA virus; 10% to IOIO/g; Lai et al., 2013; Lee
et al., 2007), rotavirus (dsRNA virus; up to 10°/g; Bennett et al., 2019) and adenovirus (dsDNA
virus; 10° to 10“/g; Srinivasan et al., 2015).

In comparison with feces, at the peak of infection, levels of SARS-CoV-2 in saliva have
been shown to typically range from 10° to 10® gc/ml with averages of 3.3 x 10° ge/ml (To et al.,
2020a), 5.7 x 10° gc/ml (To et al.. 2020b), 8.4 x 10° ge/ml (Yoon et al., 2020) and 5.0 x 10° gc/ml
(Han et al., 2020). Analysis of nasopharyngeal fluid has reported values ranging from 6.4 x 10°
ge/ml to 1.3 x 10" ge/ml (median of 8.0 x 10* in throat samples and 7.5 x 10° in sputum
samples)(Han et al., 2020; Pan et al., 2020b; Yoon et al., 2020), while others have reported viral
loads ranging from 10° to 10® ge/ml in pharyngeal mucosa and endotracheal aspirate (To et al.,
2020b; Fitzek et al., 2020). This implies that swallowing of sputum, saliva and nasopharyngeal
fluids may contribute to the fecal SARS-CoV-2 RNA signal in some individuals. However, the fact
that SARS-CoV-2 RNA cannot be found in feces from all infections (i.e. nasopharyngeal positive,

fecal negative) suggests that its contribution might be small.
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There are few reports of SARS-CoV-2 RNA in urine as this is not a common manifestation
of COVID-19, even in severe infections (Lo et al., 2020; Wang et al., 2020; Wolfel et al., 2020);
however, one study has reported levels of 3.2 x 10> ge/ml (Peng et al., 2020b) and in another a very
short-lived peak of 6.1 x 10° gc/ml (Yoon et al., 2020). It should be noted that most of the reports
of viral loads are for hospitalized patients with mild to severe COVID-19 symptoms and that this
may not accurately reflect viral abundance in asymptomatic, pre-symptomatic or very mild cases
where levels in feces are likely to be much lower. It is also expected that renal infections will not
occur in these mild or asymptomatic cases, suggesting that urine is not a vehicle for disease
transmission outside of clinical settings, or at all.

The between-person variability in viral load, even within severe cases, appears to be very
large (To et al., 2020b). This likely reflects the wide variation in symptoms experienced by
individuals and organs targeted by the virus (Fig. 1). Overall, evidence suggests that high levels of
SARS-CoV-2 RNA in feces is consistent with a GI tract infection in some individuals. However,
the possibility that GI tract symptoms in COVID-19 cases are caused by other organisms cannot be
discounted. For example, antibiotics are often prescribed during treatment of severely ill patients,
creating a niche for opportunistic GI bacterial pathogens, and has been directly linked to the
incidence of diarrhea in some COVID-19 studies (Lin et al., 2020). Accumulating evidence also
indicates that microbial co-infection may increase the risk of disease severity in humans by
suppression of the immune system or by overcoming antibiotics used in disease therapies (Zhu et
al., 2020). The evidence on co-infections on the outcome of COVID-19 patients appears
contradictory (Pinky and Dobrovolny, 2020). What is clear, however, is that co-infections are
commonplace. For example, an analysis of nasopharyngeal swabs showed that 20% of the
individuals (n = 116), who tested positive for SARS-CoV-2 also tested positive for other respiratory
pathogens (Kim et al., 2020). The most common co-infections being rhinovirus/enterovirus (6.9%),

respiratory syncytial virus (5.2%), and non-SARS-CoV-2 coronaviridae (4.3%). Similarly, Zhu et
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al. (2020) found that 32% had viral co-infection, 92% had bacterial co-infection, and 23% had
fungal co-infections with respiratory pathogens. This level of co-infection is similar to other HCoV
strains (Gaunt et al., 2010). A similar study reported co-infection of the respiratory tract by SARS-
CoV-2 and influenza A and B (Ding et al., 2020a). Similar work is therefore required to determine
the level of co-infections in the GI tract, especially as this might impact on the severity of infection
by SARS-CoV-2. The quantities of SARS-CoV-2 RNA in feces are also within the range reported
for other respiratory viruses such as influenza HIN1 (swine flu) which has been detected in
respiratory, stool, and urine samples at levels of 2.7 x 10°, 7.2 x 10°, and 7.24 x 10* copies/ml,
respectively (To et al., 2010), and in the case of MERS-CoV where levels in urine ranged from 10°-
10° ge/ml, feces from 10°-10* ge/ml and those in the respiratory tract from 10°-107 ge/ml (Corman
et al., 2015; Drosten et al., 2013) (Fig. 3). In contrast, the levels of SARS-CoV-1 in feces, however,
has been reported to be much higher than for SARS-CoV-2, ranging from 10° -10° g¢/ml (Cheng et
al., 2004; Hung et al., 2009). This latter result suggests that conclusions on fecal-oral transmission

risk from SARS-CoV-1 should be extrapolated to SARS-CoV-2 with extreme caution.

6. Is SARS-CoV-2 in stool and urine infectious?

Of critical concern in evaluating the risk of a fecal/urine-oral or fecal/urine-ocular transmission
pathway for SARS-CoV-2 is the degree of infectivity of fecal- and urine-derived virus particles.
These studies require tissue culture with human (or other) cell lines where addition of SARS-CoV-2
leads to an increase in viral titer from 10* particles/ml in the culture medium to 10° particles/ml
within 12 hours (Lamers et al., 2020; Matsuyama et al., 2020; Ogando et al., 2020). One of the first
infectivity studies was undertaken from stool samples taken from a laboratory-confirmed COVID-
19 severe pneumonia case, 15 days after the onset of symptoms. After viral isolation, VERO cell
cultures were inoculated and virus multiplication was subsequently detected, suggesting that feces

have the potential to transmit the disease (Zhang et al., 2020d). In a subsequent, more
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comprehensive study of COVID-19 cases, it was found that of the 153 stool specimens analyzed,
29% tested positive for SARS-CoV-2, from which infectious virus was recovered from 2 samples
(Wang et al., 2020c). Similar studies have also confirmed the recovery of infectious virus from
stools, VERO cells and human in intestinal organoid cultures (Lamers et al., 2020; Xiao et al.,
2020a; Zhou et al., 2020).

Other comprehensive studies have suggested that no infectious viral particles can be
recovered from feces at the peak of infection, despite infectious virus being recovered from
respiratory specimens (Wolfel et al., 2020). The recent isolation of infectious virus from urine
raises the possibility for urine-based transmission (Sun et al., 2020a), although given the low
prevalence of this phenomenon, its significance outside of clinical settings is probably extremely
low. Although these studies confirm that feces and urine may contain infectious viral particles, they
also have various drawbacks. Firstly, it is evident that while viral recovery is possible from some
samples, interestingly it is not from others, despite all the feces testing RT-qPCR or digital PCR
positive for SARS-CoV-2 RNA. Similar observations have also been made for nasopharyngeal
swabs from patients with lower viral load, suggesting viral nucleic acids might be detected for
longer periods than the live virus in different sample types (NCIC-AMS, 2020). In addition, studies
have only focused on feces with high viral loads (based on Ct values) and these may not be
reflective of pre- or asymptomatic cases. The levels of SARS-CoV-2 RNA in the samples used in
these infectivity assays are also not reported, preventing realistic quantitative risk assessments to be
made for fecal/urine-oral transmission (and to account for the levels added in the source material
itself). The lack of inclusion of positive controls is also problematic where no infectious virus is
recovered from any samples; i.e. problems with local culturing protocols cannot be eliminated
(Wang et al., 2005b). Further, in plaque-based assays, co-contaminating (non-CoV) viruses may
also lead to false-positive results, although metagenomics could be used to identify this. In such

cases, it is essential that a quantitative increase in SARS-CoV-2 beyond the inoculum dose is
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confirmed by qPCR. It would also be advantageous to undertake dose response curves (i.e. serial
dilution of fecal extracts) to allow determination of comparative levels of infectivity between
samples with known viral titers (Matsuyama et al., 2020). Further, the virus is known to propagate
poorly in some cell lines currently being used to assay the infectivity of SARS-CoV-2 (Harcourt et
al., 2020; Matsuyama et al., 2020; Ogando et al., 2020). Therefore, it is unclear whether negative
infectivity results indicate a lack of infectious particles or just a poor choice of screening assay.
Based on this we conclude that further work is needed to better evaluate the temporal dynamics of
viral shedding and its infectious nature in feces and urine.

For disease transmission in the community it is important to know whether feces and urine
contain infectious virus in the pre- and post-symptomatic phase. This is particularly pertinent given
that clinical cases may still be shedding the virus after the relieving of symptoms and their
discharge back into the community. However, current evidence suggests that the infectious viral
count will decline rapidly within a week of symptoms starting. Drawing on evidence from
nasopharyngeal samples, which has shown a close correlation between viral abundance and
infectivity, it is likely that viral shedding in feces in the post-symptomatic phase poses a much
lower transmission risk (La Scola et al., 2020; Wolfel et al., 2020). In addition, even if infectious
virus is detected in cell culture, it doesn’t necessarily imply that it will cause infection in the upper
respiratory tract of humans at the same dose, as physicochemical barriers (e.g. mucus, low pH) can
further limit virus infectivity (NIS-PHE, 2020).

Overall, we conclude that while virus particles contained in respiratory droplets are known
to be highly infectious, evidence suggests that feces and urine probably contain low levels to no
infectious particles. In comparison to respiratory particles, they are also less likely to be spread
during daily life, being confined largely to toilets and other enclosed environments. This may
subsequently lead to contamination of hands, surfaces, food and water; however, in most cases the

levels of contamination are likely to be low where good hygiene and sanitation is practiced. Despite
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this, the possibility of infection by contamination of the oral cavity, respiratory mucosa and eyes
cannot be entirely discounted. This risk of infection spread is most likely associated with those
experiencing co-infections or frequent watery diarrhea (Peiris et al., 2003; Tsang et al., 2003). As
shedding rates appear to be correlated with symptom severity and the peak of the infection cycle,
this risk would be greatest firstly in intensive care units (i.e. nosocomial spread), followed by care
facilities (e.g. elderly care homes) where residents with diarrhea need secondary assistance, and
heavily used and poorly maintained public toilets. The potential for the virus to spread from
domestic toilets is likely to be very low as these have restricted use, probably involve individuals
with mild infections and those with the capacity to practice good personal hygiene unassisted.
Subsequently, in developing regions, where access to safe and hygienic sanitation is limited, the
risks associated with fecal transmission routes may be higher (Anser et al., 2020; Patel, 2020). For
example, an estimated 9% (673 million) of the global population defecate in the open and another
8% (627 million) use a facility shared with at least one other household as their primary sanitation
location (Caruso and Freeman, 2020). This risk is perceived to be highest in urban sub-Saharan
Africa where an estimated 32% of sanitation is shared (UNICEF-WHO, 2019). Further, women
might be at increased risk due to more frequent use, both for meeting their own needs, including
menstruation, and assisting dependent family members (Caruso et al., 2017). Another exemplar is
India, where ca. 15% of households lack access to improved sanitation. The availability of soap for
effective handwashing and elimination of SARS-CoV-2 from the face and hands is also
problematic in many countries (Patel, 2020; Coetzee and Kagee, 2020). Sanitary workers in less
economically developed countries may also be at higher risk of contracting COVID-19, due to
underlying respiratory problems associated with exposure to various hazardous materials and lack
of personal protection equipment (Salve and Jungari, 2020).

The survival of SARS-CoV-2 in feces after release from the body is poorly understood.

However, this information is important to evaluate the potential for environmental transmission.
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The fecal-oral route has also been implicated in disease transmission during sexual contact,
however, this risk is believed to be very low in comparison to disease transmission via respiratory
droplets and the oral-oral route (Pan et al., 2020c; Cui et al., 2020; Li et al., 2020e). From the
available evidence on SARS-CoV-1 it has been shown that the virus can survive for 3 hours to 5
days depending on the watery nature of the diarrhea (positively related to water content), but
numbers fall exponentially with time and survival rate is less than in nasopharyngeal or tracheal
aspirate (Chan et al., 2004; Lai et al., 2005). More work is needed to understand the factors that
influence the survival of fecal-derived SARS-CoV-2 on different matrices after release (e.g. bed

sheets, towels, clothes, toilets).

7. Persistence of SARS-CoV-2 in sanitation facilities

One of the most likely points of disease transmission from feces and urine is via shared toilets (e.g.
hospitals, workplaces). Based on the use of surrogate viruses and 10° viral particles per fecal event,
work has shown that is unlikely that SARS-CoV-2 would reach high levels on contact surfaces via
the aerosol route after flushing (e.g. <10° particles on either the seat, handle, floor, walls)(Sassi et
al., 2018). In contrast, repeated use by people infected by SARS-CoV-2 might lead to a progressive
accumulation of virus to higher levels, assuming infrequent cleaning. This is supported by studies
in a dedicated SARS-CoV-2 outbreak center in Singapore where SARS-CoV-2 RNA was recovered
from the toilet bowl, sink and door handle (Ong et al., 2020). Another study also found elevated
levels of the virus in a patient-dedicated mobile toilet in China (Liu et al., 2020d), while others have
detected contamination of toilet seats, exhaust grilles and taps in a COVID-19 dedicated hospital
(Ding et al., 2020b; Chia et al., 2020) and in households (Dé6hla et al., 2020). The source of
contamination could have been from urine and feces in the toilet, particularly in facilities used by

patients with diarrhea (Chia et al., 2020). This spread is likely to be highly dependent on the
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operational design of the toilet (Li et al., 2020f). It is also likely that contamination on touch
surfaces and walls was caused via respiratory droplets during coughing, or from transfer to surfaces
from hands contaminated with nasopharyngeal fluids. Although each episode of diarrhea or vomit
may spread low levels of virus, patients with GI symptoms often have several/frequent episodes of
these symptoms, potentially increasing the virus load on those surfaces.

Vomiting also has the potential to spread the virus more widely than either defecation or
urination events (i.e. vomiting onto floors, toilets and sinks) due to the greater potential for droplet
formation and aerosolization (Kirby et al., 2016; Makison Booth and Frost, 2019). For example,
projectile vomit can contaminate an area of up to 8 m* (Makison Booth, 2014). Unfortunately, the
levels of infectious SARS-CoV-2 in vomit remain unknown, but are likely to be low based on the
low pH of vomit (mean pH of 3.8, range 2.5-5.0) and studies in other CoVs (Kirby et al., 2016;
Willumsen et al., 2004; Cowen and Hitchner, 1975; Panon et al., 1988). Vomit is also likely to
contain SARS-CoV-2 from nasopharyngeal fluids as well as from the GI tract. The potential for
vomit-, fecal- and urine-derived SARS-CoV-2 to remain infectious on sanitation surfaces for long
periods of time remains unclear and is probably highly dependent on the receiving surface (toilet
bowl, walls, floor etc), prevailing climatic conditions (e.g. temperature, humidity, UV exposure;
Ren et al., 2020), and cleaning regime (Kampf et al., 2020). Studies on other matrices, however,
have shown that viable SARS-CoV-2 might persist for at least 3 hours in aerosols after their
formation (Smither et al., 2020), and for up to 2 or 4 days on plastic and stainless steel surfaces
(van Doremalen et al., 2020; Chin et al., 2020). This has led to guidance suggesting that toilets in
communal areas should be disinfected with sodium hypochlorite or other virucidal disinfectants at
least daily (ECDC, 2020). In conclusion, there is evidence to suggest that viral contamination of
toilet environments may occur, although levels of contamination are expected to be very low in
most settings based on infectious viral loads in feces and urine. An exception to this could be very

high occupancy toilets where a progressive accumulation of the virus may occur, no sanitary
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cleaning is undertaken, and personal hygiene practices are poor. Although we cannot discount the
potential for fecal-mucosal transmission when individuals touch their mouth, nose or eyes with
contaminated hands, this would be largely preventable through handwashing and regular
disinfection of sanitation facilities.

The discussion above mainly relates to countries with good levels of domestic sanitation;
however, over 2.5 billion people worldwide lack access to improved water and sanitation (e.g.
urban slums, rural locations, refugee camps)(Sommer et al., 2015). In these settings, infection
control may be more challenging due to the lack of handwashing facilities and cultural issues (e.g.
gender violence; Poole et al., 2020; Sommer et al., 2015; Truelove et al., 2020). Additionally,
existing toilet and sanitation facilities tend to be less private, which leads to greater personal
congregation near central facilities. Similar is true for community potable water sources, which
often are only in a handful of locations, such as community water taps, for whole neighborhoods.
To date, very little is known about the persistence and infectivity of SARS-CoV-2 in these contexts

and further work is clearly needed in this area.

8. Amount and persistence of SARS-CoV-2 in the sewer network

Once feces and urine enter the sewer network there are several points at which human exposure
may occur (Fig. 5). However, significant dilution will occur in the drainage network due to inflow
of water from other domestic and industrial sources. For example, at the peak of a severe infection,
based on our analysis, an adult may be expected to lose ca. 1.0 1 of fluid in diarrhea (during 3-6
events) and 0.8 | in urine per day (Aranda-Michel and Giannella, 1999; Pan et al., 2020d).
Assuming a SARS-CoV-2 load of 8 x 10° g¢/ml in feces and 3.2 x10? gc/ml in urine and a flushing
volume of 6.8 1 per defecation/urination event (6 per d), this equates to a viral concentration in
water leaving the toilet of 1.9 x 10® g¢/l. In a single occupancy household setting, and assuming a

total water use of 135 I/person/d, this will be further diluted, giving a maximum final effluent
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concentration of 5.9 x 107 ge/l and total viral excretion load of 8.0 x 10° ge/person/d. It is important
to note that these calculations are based on genome copy numbers, which are significantly higher
than infectious virus particle numbers, due to the production of defective viral genomes during
RNA virus replication (Vignuzzi and Lopez, 2019). Studies of wastewater have yet to recover
infectious virus, despite its genetic material being readily detected by PCR (Déhla et al., 2020).

The human minimal infectious dose of SARS-CoV-2 is not currently known. Estimates for
SARS-CoV-1 range from 16 to 280 plaque forming units (PFU)(Watanabe et al., 2010).
Unfortunately, the relationship between genome copies and PFU is also unknown for SARS-CoV-
2, however, it is interesting to note that viable SARS-CoV-2 could not be isolated from clinical
respiratory tract samples containing fewer than 10® ge/ml (Wélfel et al., 2020). For influenza virus,
the ratio between TCID50 (TCID50 = PFU/0.7) and particle count is 1:100 to 1:1000 (Yezli and
Otter, 2011), whilst work with clinical influenza samples has demonstrated a 100-10,000 fold
difference between TCIDS50 and genome copy number (Van Wesenbeeck et al., 2015). On this
basis, it is likely that the human minimal infectious dose of aerosolized SARS-CoV-2 is in the order
of 10°-10* gc. The route of infection is also critical when considering the infectious dose. In
influenza, the infectious dose of aerosolized virus appears to be several orders of magnitude lower
than for virus that is deposited in droplets on the upper respiratory tract (Yezli and Otter, 2011).
The infectious dose of SARS-CoV-2 if transmitted via the feco-oral route is therefore likely
significantly higher than 10>-10% gc. On this basis, exposure to raw sewerage from an infected
household, elderly care home, or medical center could theoretically pose a small infection risk to
sanitation workers, assuming the virus is still infectious. Parallels from SARS-CoV-1 investigations
can also be drawn here. In the classic Amoy Gardens case study, raw sewage from one household
entered vertically connected neighboring households, resulting in a localized infection hotspot
(McKinney et al., 2006; Yu et al., 2014; Stein, 2011). It should be noted, however, that this

sanitation network was poorly maintained and would not represent those in most municipal
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buildings and should not be used to infer the risk of fecal-oral transmission of SARS-CoV-2.
Furthermore, transmission in the Amoy Gardens case study was believed to be via the
aerosolization and inhalation of infectious fecal matter, rather than via the feco-oral route.

Beyond the immediate point of entry into the sewer system point, the wastewater will be
further diluted in the drainage network by the addition of sewerage from non-infected households.
At the peak of infection in the UK in April 2020, it was estimated that 0.25% of the population was
infected (ONS, 2020). This would equate to an average community sewerage load of 1.75 x 10’
gc/l reaching a centralized wastewater treatment plant. This is consistent with typical concentrations
being reported in wastewater in many regions of the world ranging from 10% to 10° gc/l (Ahmed et
al., 2020; Foladari et al., 2020; Randazzo et al., 2020; Wu et al., 2020b; Wurtzer et al., 2020ab). At
present, there are many uncertainties in the survival of SARS-CoV-2 during its passage through the
sewer pipe network. CoVs are not thought to survive well in aqueous environments, especially in
comparison with other viruses which can persist for months (e.g. poliovirus, norovirus; Seitz et al.,
2011). This is supported by studies in which SARS-CoV-2 RNA can be readily detected by qPCR
in wastewater leaving hospitals, but which has yet to be found to contain infectious virus (Wang et
al., 2005b; Zhang et al., 2020e; Wang et al., 2020d). In fact, a recent study suggests that levels of
infectious virus were not significant in wastewater and receiving rivers, indicating the effectiveness
of wastewater treatment, combined with the natural loss of viral integrity (Rimoldi et al., 2020).
Additionally, viral particles are likely to become bound to biofilms in the pipes, degraded by other
microorganisms and inactivated by xenobiotics (e.g. surfactants, disinfectants), all of which will
lead to a progressive loss of qPCR RNA signal and degrade infectious virus (if any is present at
all)(Cheng et al., 2004; Wigginton et al., 2015). However, when SARS-CoV-1 was inoculated into
sewage at high titers (10°-10° gc/1) it was found to still contain infectious material after 14 days at
4°C and 2 days at 20°C (Wang et al., 2005¢). These conflicting laboratory and field-based studies

may reflect the different nature of the starting inoculum and failure of the lab conditions to reflect
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those in the field. This, however, may suggest that, if any live virus is present in the wastewater,
some could survive during passage through the sewage network, based on typical transit times from
households to the wastewater treatment plant (1 to 24 h). Current evidence suggests that the levels
of SARS-CoV-2 are greatly lowered during wastewater treatment, suggesting that the virus is either
degraded or becomes associated with the solids fraction during flocculation (Wang et al., 2020d).
This is consistent with studies showing a 2 to 3 log;o removal efficiency in viral RNA abundance
when comparing viral levels in influent and effluent (Wurtzer et al., 2020) and the accumulation of
SARS-CoV-2 in the sludge fraction (Peccia et al., 2020; Alpaslan Kocamemi et al., 2020). If the
sludge (biosolids) fraction is treated (e.g. pasteurized, heat-dried, alkali-lime treated), as per the
legislative requirement in many countries, this should pose no further risk to human health. One
potential area where a heightened risk of exposure may occur is during the release of bioaerosols
from wastewater aeration ranks. However, based on current estimates of the infectious dose of
SARS-CoV-2, the likelihood that this poses a risk to workers is extremely low based on the amount
of sewage that would need to be inhaled by this route to cause infection (assuming appropriate use
of personal protection equipment). In addition, there is no evidence to suggest that wastewater plant
operatives are at any greater risk to SARS-CoV-2 exposure via this route than that of the general
population, particularly when standard issue personal protective equipment is worn (WHO, 2020).
In theory, it is possible that local residents can be exposed to bioaerosols emitted from wastewater
plants (Brisebois et al., 2018; Yang et al., 2019), however, there are few documented examples
where direct viral transmission has been linked back to a wastewater treatment facility. In the case
of SARS-CoV-2, parallels should not be drawn with other viruses (e.g. norovirus, rotavirus) whose

concentrations in wastewater are typically much higher (Pasalari et al., 2019).

9. Amount and persistence of SARS-CoV-2 in the wider environment
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Given the reduced evidence on infectious virus in sewers at present and the possible degradation
and treatment processes explained above, detection in the wider environment most likely reflects
viral RNA, not infectious virus. Based on the available evidence and our own measurements, the
quantity of SARS-CoV-2 RNA in the effluent from wastewater treatment plants at the peak of a
community infection (< 0.5% of the total population) is unlikely to exceed 10* gc/l (Wurtzer et al.,
2020). Assuming that levels of viral infection decline in the community due to the implementation
of successful control measures (e.g. ‘lock down’ and social distancing) then levels in wastewater
are expected to fall below <10* gc/l. Based on the large dilutions of treated wastewater after
discharge into adjacent freshwaters (ca. 5-100 fold dilution under low river flow conditions when
the risk is greatest) or the coastal zone (ca. 10° fold dilution), it is highly likely that SARS-CoV-2
will pose very little threat to human health (e.g. during watersports, bathing, angling, consumption
of shellfish etc; Keller et al., 2014). This is supported by measurements of typical levels of water
ingestion during recreational activities of 3-30 ml/person in rivers and lakes (Dorevitch et al.,
2011), 34 ml/person during surfing (Stone et al., 2008), and 10-50 ml/person during swimming and
bathing (Dufour et al., 2017; Schets et al., 2011). Assuming a worst case human feco-oral infectious
dose of 10° ge/person, this would necessitate that levels of infectious SARS-CoV-2 greater than 3.3
x 10* ge/l would be needed to cause concern. It should also be noted that while the eyes are often in
contact with water during recreational activities, this route of SARS-CoV-2 entry into the body is
thought to be minimal, particularly in comparison to ingestion of water and oral/nasopharanyx
mucosal exposure (Sun et al., 2020b; Deng et al., 2020). This analysis for SARS-CoV-2 contrasts
with other viruses transmitted by the fecal-oral route (e.g. norovirus) where the infectious dose is
very low (ca. 10 viral particles), levels in wastewater are higher and water-borne outbreaks have
been reported (Parkkali et al., 2017 Russo et al., 2020).

In comparison to wastewater entering waterbodies, a greater source of potential risk to

infection could be the presence of an infected individual within the water itself. It is likely that
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during swimming, a person may release ca. 30-60 ml of saliva into the water (Bretz and Carrilho,
2013). Contamination may also occur from ocular fluids (Gliemes-Villahoz et al., 2020). Given the
highest recorded levels of virus in saliva (108 gc/ml), a swimming volume of 375,000 1 (25 x 10 x
1.5 m), then the levels of SARS-CoV-2 in the water would be 1.2 x 10* gc/l. Assuming the
inadvertent ingestion of 20 ml by an individual during swimming, this would result in a SARS-
CoV-2 exposure dose of 2.4 x 10 ge/person. This risk would be most relevant in non-chlorinated
waters as standard disinfection procedures (e.g. chlorination and UV treatment in swimming pools)
should rapidly reduce levels of infectious virus in the water (WHO, 2020). It should be noted that
natural UV irradiation is also likely to eliminate the virus in water (Lytle and Sagripanti, 2005),
however, the effect of this on SARS-CoV-2 in aqueous media remains unknown. Work on
aerosolized SARS-CoV-2 has shown that it is inactivated relatively quickly (within hours) by solar
UV irradiation (Sagripanti and Lytle, 2020). Further work is required to model the dispersal of
SARS-CoV-2 in a range of aqueous environments (e.g. lidos, swimming pools, rivers, estuaries,
coastal waters). Fundamental to this is a better knowledge of (i) the persistence and infectivity of
SARS-CoV-2 in these environments, (ii) the potential for zoonotic infection (secondary hosts for
SARS-CoV-2), and (iii) establishing the infectious dose of the virus. Using these data, and
currently known information on SARS-CoV-2, quantitative microbial risk assessments could be
undertaken to inform on human health risks in different environmental exposure scenarios based on
dose-response models (Beaudequin et al., 2015).

Unlike other viruses (e.g. norovirus), there is no evidence to suggest that SARS-CoV-2 can
accumulate in marine and freshwater organisms destined for human consumption (e.g. fish, oysters,
mussels). The low likelihood of SARS-CoV-2 accumulation in fish is supported by the low levels
of ACE-2 receptors in these organisms (Damas et al., 2020). In the case of shellfish, it is known
that norovirus readily accumulates in shellfish as it binds to a human-like intestinal type A histo-

blood group antigen in the shellfish tissue (Tian et al., 2007). Evidence also suggest that oysters
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possess an ACE-2-like receptor (CgACE) suggesting that bioaccumulation may be possible,
however, whether SARS-CoV-2 can bind to CgACE, and whether the receptor is present in

sufficient amounts to induce bioaccumulation remains unknown (Riviere et al., 2011).

10. Conclusions and implications for public health

Our critical analysis of the available evidence and potential transmission routes suggests that the
possibility of fecal/urine-oral/ocular transmission of SARS-CoV-2 is extremely low to negligible
except where direct person-to-person contact occurs. This is consistent with the many millions of
documented cases of COVID-19 worldwide, and the fact that none of these have implicated feces
or fecal contaminated material as part of the infection pathway. Feces have been implicated in
contamination of the healthcare environment/surfaces, however, the role of those in infection
remains unclear. It should be noted that our conclusions are based on western-style sanitation
networks and wastewater treatment. The risks may be higher in less economically developed
countries and areas with poor sanitation; however, there is insufficient evidence to enable this to be
critically evaluated. This is clearly an area that warrants further research. Assuming levels of
SARS-CoV-2 remain relatively low in the population (<1%), our analysis also suggests that the risk
of contracting COVID-19 from water supplies, wastewater, food, bathing/recreational waters, and
the coastal zone remains extremely low. This is particularly the case if personal hygiene measures
are maintained (e.g. handwashing) and communal sanitary facilities are regularly cleaned and
disinfected (Lotfinejad et al., 2020; Brauer et al., 2020). Following a precautionary principle, we
would also recommend that households with an on-going infection, and particularly those
exhibiting diarrhea, add sodium-hypochlorite or similar disinfectant prior to flushing to reduce

further downstream risk of infection.
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Highlights

e SARS-CoV-2 RNA can be readily detected in feces and occasionally urine
e Severe GI dysfunction only occurs in a small number of cases (11 = 2%)
e Likelihood of SARS-CoV-2 being transmitted via feces appears very low

e Likelihood of infection from sewage-contaminated water or food is extremely low
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Figure 1. Summary of symptoms experienced in clinically reported SARS-CoV-2 infections.
The data is the summary of 48 independent reports involving a total of 3706 patients. The
yellow bars are those associated with gastrointestinal problems. In the box plots, the
boundary of the box closest to zero indicates the 25™ percentile, a black line within the box
marks the median, and the boundary of the box farthest from zero indicates the 75
percentile. Whiskers above and below the box indicate the 10™ and 90" percentiles. Points
above and below the whiskers indicate outliers outside the 10™ and 90™ percentiles. The
average size of the cohort studies was 79 + 21 (n = 48).



-
£
J

HE Sputum
[ Throat
I Stools

_
N
1

-
o
1

Virus levels (40-CT value)
[o-]

Time after onset of symptoms (weeks)
Figure 2. Temporal dynamics of SARS-CoV-2 in the sputum, throat and stools. Data are

from a cohort (n = 32) of COVID-19 patients in China. Adapted from Huang et al. (2020).
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Figure 3. Prevalence of human pathogenic viruses in nasopharyngeal and stool samples from
individuals (z = 331). The points represent individual viruses including Human Coronavirus
(HCoV), Influenza A, Influenza B, Human Rhinovirus (HRV), Respiratory syncytial virus
(RSV), Human Adenovirus (HAdV), Human Bocavirus (HBoV) and Human
Parainfluenzavirus (HPIV). Data calculated from (Minodier et al., 2017).
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Figure 5. Summary of the main infection pathways by which SARS-CoV-2 can theoretically
contaminate the environment and cause secondary infections. The numbers denote the major
pathogen transport routes and exposure points: (1) contamination of toilets by infected
individuals, aerosolization of feces/urine, faulty plumbing in buildings (2) pathogen transfer
in the sewer network and potential exposure to sanitation workers in the sewer network, (3)
discharge of untreated contaminated wastewater to rivers (sewer overflows), (4) release in
bioaerosols from wastewater treatment plants and exposure of workers to potentially
contaminated wastewater, (5) release of treated wastewater to rivers, (6) disposal of
wastewater-derived biosolids to land, (7) transport in freshwater and exposure of individuals
during recreational activities, (8) abstraction of river water for human consumption, (9)
breaks in sewage pipes leading to groundwater contamination (10) hospital/medical centre
release of wastewater, (11) contamination of groundwater from burial of infected bodies, (12)
irrigation of crops with potentially contaminated water abstracted from rivers, (13)
contamination of marine waters, dispersal in the coastal zone and potential contamination of
fish/shellfish and people engaging in recreational activities.



Table 1. Comparison of the properties of SARS-CoV-2 with Norovirus, a virus with known

fecal-oral transmission.

SARS-CoV-2 Norovirus
Family Coronaviridae Caliciviridae
Type +ssRNA +ssRNA
Shape Spherical Icosahedral
Genome size (kbp) 29.9 7.5
Size (nm) 50-200 23-40
Coating Enveloped Non-enveloped

Human infections per year

Primary symptoms

>7 million (Nov. 2019-Jun.
2020)
Respiratory problems, fever,

685 million

Diarrhea, GI

GI pain pain, vomiting
Prevalence of diarrhea (% of total cases) 11 88
Incubation period 5-7d 1-3d
Symptom duration 7-14d 2-5d
Death rate (% of total infections)® 1.40 0.003
Shedding rate in feces (gc/ml) 10%-107 10%-10"
Shedding duration after symptoms have 14-28 14
subsided (d)
Infectious dose (PFU)" Unknown (estimate 10°-10%)  10'-10?
Vaccine available No No
Cases directly linked to fecal-oral transmission ~ None Frequent
Links to consuming contaminated water None Infrequent
Links to consuming contaminated food None Frequent
Individuals most at risk of complications Elderly Elderly
Environmental durability Low High
Sensitivity to low pH High Low
Sensitivity to alcohol High Low
Sensitivity to chlorine High Medium-high

"Deaths after accounting for both confirmed cases and estimates of asymptomatic carriage.

*Infection mediated via the gastrointestinal tract. Only an estimate is available for SARS-

CoV-2.

“Values from the main text and from published values (Li et al., 2021; Robilotti et al., 2015;

Hall et al., 2013; Pfeiffer, 2010; Kampf et al., 2020; Siddharta et al., 2017).





