289 research outputs found

    Reply

    Get PDF

    Use of Cardiac Troponin for the Diagnosis of Cardiac Pathology in Postmortem Samples Taken at Autopsy

    Get PDF
    The diagnosis of acute cardiac pathology is a clinical challenge in both the living and in the postmortem setting. Cardiac troponin (cTn) T and cardiac troponin I released from the contractile apparatus of cardiomyocytes into the circulation can be detected by sensitive and specific immunoassays and are the gold standard biochemical test for diagnosis of acute coronary syndromes (ACS). Recently with the advent of more sensitive detection methods, elevation in non-ACS has become apparent causing clinical confusion. In most cases, these elevations are related to subclinical cardiac damage and often confer poor prognosis in cTn-positive patients. Biomarkers of cardiomyocyte damage may be of value in routine hospital and medico-legal autopsy. A significant body of evidence has emerged since the late 1990s, assessing the clinical utility of cardiac troponin in biological fluids or in immunohistochemical staining of cardiac tissue to aid in the diagnosis of acute cardiac pathology when standard microscopic evidence is inconclusive. This chapter reviews the extensive literature on the subject and details the disparity between pericardial fluid and serum for the use of cTn in the postmortem setting

    Coronavirus Disease: Epidemiology, Aetiology, Pathophysiology and Involvement of the Cardiovascular System

    Get PDF
    Since the emergence in China of coronavirus disease (COVID-19) in December 2019; the virus causing the pandemic has infected the human population in almost every country and territory on the globe. At the time of writing there are over 84 million confirmed cases of infection and over 1.8 million deaths globally. Rates of infection differ as does the number of severe cases and subsequent deaths between countries and continents. This is due in part to lockdown measures, social distancing and wearing of face coverings. It is also reflected by how healthcare systems record coronavirus deaths along with access to testing as well as tracking and tracing of infected individuals. Symptoms of COVID-19 include a novel persistent cough, fever and anosmia (loss of smell). In most cases, such symptoms are mild. A small proportion of those who become infected however, have a severe reaction to the disease affecting multiple organ systems and often require respiratory support in the intensive care setting. One such physiological system affected is the cardiovascular system. This is likely due to the increased number of ACE2 receptors in co-morbid cardiac pathologies. ACE2 receptors serve as the entry port for the coronavirus into human cells. Those individuals with underlying cardiovascular risk factors are therefore disproportionately at risk of COVID-19 infection. This chapter reviews the aetiology and epidemiology of the coronavirus infection; potential pathophysiological mechanisms of disease involving the cardiovascular system including the clinical utility of biomarkers, electrocardiography and echocardiography as well as autopsy cardiac pathology and histopathology

    The mediation of coronary calcification in the association between risk scores and cardiac troponin T elevation in healthy adults: Is atherosclerosis a good prognostic precursor of coronary disease?

    Get PDF
    BACKGROUND: Conventional cardiac risk scores may not be completely accurate in predicting acute events because they only include factors associated with atherosclerosis, considered as the fundamental precursor of cardiovascular disease. In UK in 2006-2008 (Whitehall II study) we tested the ability of several risk scores to identify individuals with cardiac cell damage and assessed to what extent their estimates were mediated by the presence of atherosclerosis. METHODS: 430 disease-free, low-risk participants were tested for high-sensitivity cardiac troponin-T (HS-CTnT) and for coronary calcification using electron-beam, dual-source, computed tomography (CAC). We analysed the data cross-sectionally using ROC curves and mediation tests. RESULTS: When the risk scores were ranked according to the magnitude of ROC areas for HS-CTnT prediction, a score based only on age and gender came first (ROC area=0.79), followed by Q-Risk2 (0.76), Framingham (0.70), Joint-British-Societies (0.69) and Assign (0.68). However, when the scores were ranked according to the extent of mediation by CAC (proportion of association mediated), their order was essentially reversed (age&gender=6.8%, Q-Risk2=9.7%, Framingham=16.9%, JBS=17.8%, Assign=17.7%). Therefore, the more accurate a score is in predicting detectable HS-CTnT, the less it is mediated by CAC; i.e. the more able a score is in capturing atherosclerosis the less it is able to predict cardiac damage. The P for trend was 0.009. CONCLUSIONS: The dynamics through which cardiac cell damage is caused cannot be explained by 'classic' heart disease risk factors alone. Further research is needed to identify precursors of heart disease other than atherosclerosis

    Inhibition of glycolysis and mitochondrial respiration promotes radiosensitisation of neuroblastoma and glioma cells

    Get PDF
    Background: Neuroblastoma accounts for 7% of paediatric malignancies but is responsible for 15% of all childhood cancer deaths. Despite rigorous treatment involving chemotherapy, surgery, radiotherapy and immunotherapy, the 5-year overall survival rate of high-risk disease remains < 40%, highlighting the need for improved therapy. Since neuroblastoma cells exhibit aberrant metabolism, we determined whether their sensitivity to radiotherapy could be enhanced by drugs affecting cancer cell metabolism. Methods: Using a panel of neuroblastoma and glioma cells, we determined the radiosensitising effects of inhibitors of glycolysis (2-DG) and mitochondrial function (metformin). Mechanisms underlying radiosensitisation were determined by metabolomic and bioenergetic profiling, flow cytometry and live cell imaging and by evaluating different treatment schedules. Results: The radiosensitising effects of 2-DG were greatly enhanced by combination with the antidiabetic biguanide, metformin. Metabolomic analysis and cellular bioenergetic profiling revealed this combination to elicit severe disruption of key glycolytic and mitochondrial metabolites, causing significant reductions in ATP generation and enhancing radiosensitivity. Combination treatment induced G2/M arrest that persisted for at least 24 h post-irradiation, promoting apoptotic cell death in a large proportion of cells. Conclusion: Our findings demonstrate that the radiosensitising effect of 2-DG was significantly enhanced by its combination with metformin. This clearly demonstrates that dual metabolic targeting has potential to improve clinical outcomes in children with high-risk neuroblastoma by overcoming radioresistance

    Performance of a non-invasive test for detecting mycobacterium bovis shedding in European badger (meles meles) populations

    Get PDF
    The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, in cattle herds in the United Kingdom is increasing, resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir and is the subject of control measures aimed at reducing incidence in cattle populations. Understanding the epidemiology of M. bovis in badger populations is essential to direct control interventions and understand disease spread; however, accurate diagnosis in live animals is challenging and currently uses invasive methods. Here we present a non-invasive diagnostic procedure and sampling regime using field sampling of latrines and detection of M. bovis with qPCR, the results of which strongly correlate with the results of immunoassay testing in the field at the social group level. This method allows M. bovis infection in badger populations to be monitored without trapping and provides additional information on the quantity of bacterial DNA shed. Our approach may therefore provide valuable insights into the epidemiology of bovine tuberculosis in badger populations and inform disease control interventions

    Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19

    Get PDF
    The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102–105 gc/ml) and feces (ca. 102–107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105–1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector

    The variability and seasonality of the environmental reservoir of Mycobacterium bovis shed by wild European badgers

    Get PDF
    The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, has been increasing in UK cattle herds resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir of infection. One likely route of transmission to cattle is through exposure to infected badger urine and faeces. The relative importance of the environment in transmission remains unknown, in part due to the lack of information on the distribution and magnitude of environmental reservoirs. Here we identify potential infection hotspots in the badger population and quantify the heterogeneity in bacterial load; with infected badgers shedding between 1 × 103 − 4 × 105 M. bovis cells g−1 of faeces, creating a substantial and seasonally variable environmental reservoir. Our findings highlight the potential importance of monitoring environmental reservoirs of M. bovis which may constitute a component of disease spread that is currently overlooked and yet may be responsible for a proportion of transmission amongst badgers and onwards to cattle

    Multicentre evaluation of a new point-of-care test for the determination of NT-proBNP in whole blood

    Get PDF
    Background: The Roche CARDIAC proBNP point-of-care (POC) test is the first test intended for the quantitative determination of N-terminal pro-brain natriuretic peptide (NT-proBNP) in whole blood as an aid in the diagnosis of suspected congestive heart failure, in the monitoring of patients with compensated left-ventricular dysfunction and in the risk stratification of patients with acute coronary syndromes. Methods: A multicentre evaluation was carried out to assess the analytical performance of the POC NT-proBNP test at seven different sites. Results: The majority of all coefficients of variation (CVs) obtained for within-series imprecision using native blood samples was below 10% for both 52 samples measured ten times and for 674 samples measured in duplicate. Using quality control material, the majority of CV values for day-to-day imprecision were below 14% for the low control level and below 13% for the high control level. In method comparisons for four lots of the POC NT-proBNP test with the laboratory reference method (Elecsys proBNP), the slope ranged from 0.93 to 1.10 and the intercept ranged from 1.8 to 6.9. The bias found between venous and arterial blood with the POC NT-proBNP method was ≤5%. All four lots of the POC NT-proBNP test investigated showed excellent agreement, with mean differences of between −5% and +4%. No significant interference was observed with lipaemic blood (triglyceride concentrations up to 6.3mmol/L), icteric blood (bilirubin concentrations up to 582μmol/L), haemolytic blood (haemoglobin concentrations up to 62mg/L), biotin (up to 10mg/L), rheumatoid factor (up to 42IU/mL), or with 50 out of 52 standard or cardiological drugs in therapeutic concentrations. With bisoprolol and BNP, somewhat higher bias in the low NT-proBNP concentration range (<175ng/L) was found. Haematocrit values between 28% and 58% had no influence on the test result. Interference may be caused by human anti-mouse antibodies (HAMA) types 1 and 2. No significant influence on the results with POC NT-proBNP was found using volumes of 140-165μL. High NT-proBNP concentrations above the measuring range of the POC NT-proBNP test did not lead to false low results due to a potential high-dose hook effect. Conclusions: The POC NT-proBNP test showed good analytical performance and excellent agreement with the laboratory method. The POC NT-proBNP assay is therefore suitable in the POC setting. Clin Chem Lab Med 2006;44:1269-7

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer
    • …
    corecore