176 research outputs found

    Consolidation of pathology services in England: have savings been achieved?

    Get PDF
    Background: During the last decade, pathology services in England have undergone profound changes with an extensive consolidation of laboratories. This has been driven by some national reviews forecasting a national reduction of costs by £250–£500 million (315315–630 million) a year as a result. The main aim of this paper is to describe the financial impact of such consolidation, with a specific focus on the forecasted savings. A secondary aim is to describe the development of private sector involvement in laboratory services in a traditionally publicly funded healthcare system and the development of pathology staff size. Methods: In the English scenario, the majority of hospitals and laboratories are publicly funded and a survey was sent as Freedom of Information request to all directors of pathology. A descriptive comparison of savings among consolidated and non-consolidated pathology services was made by using the pathology budgets in two different periods (2015 versus 2010), adjusted by inflation and increased activity. Results: The hub-and-spoke model has been implemented as part of the consolidation process of pathology services in England. Consolidated pathology networks have achieved higher savings compared to non-consolidated single laboratories. There has been an increased role of private providers and savings were achieved with negligible personnel redundancies. Conclusions: Consolidated units have on average achieved larger cost savings than non-consolidated units but further analysis with stronger research design is required to independently evaluate the impact of pathology consolidation on both savings and quality

    Classification of Ventricular Septal Defects for the Eleventh Iteration of the International Classification of Diseases—Striving for Consensus: A Report From the International Society for Nomenclature of Paediatric and Congenital Heart Disease

    Get PDF
    The definition and classification of ventricular septal defects have been fraught with controversy. The International Society for Nomenclature of Paediatric and Congenital Heart Disease is a group of international specialists in pediatric cardiology, cardiac surgery, cardiac morphology, and cardiac pathology that has met annually for the past 9 years in an effort to unify by consensus the divergent approaches to describe ventricular septal defects. These efforts have culminated in acceptance of the classification system by the World Health Organization into the 11th Iteration of the International Classification of Diseases. The scheme to categorize a ventricular septal defect uses both its location and the structures along its borders, thereby bridging the two most popular and disparate classification approaches and providing a common language for describing each phenotype. Although the first-order terms are based on the geographic categories of central perimembranous, inlet, trabecular muscular, and outlet defects, inlet and outlet defects are further characterized by descriptors that incorporate the borders of the defect, namely the perimembranous, muscular, and juxta-arterial types. The Society recognizes that it is equally valid to classify these defects by geography or borders, so the emphasis in this system is on the second-order terms that incorporate both geography and borders to describe each phenotype. The unified terminology should help the medical community describe with better precision all types of ventricular septal defects

    Nomenclature for Pediatric and Congenital Cardiac Care: Unification of Clinical and Administrative Nomenclature – The 2021 International Paediatric and Congenital Cardiac Code (IPCCC) and the Eleventh Revision of the International Classification of Diseases (ICD-11)

    Get PDF
    Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code ( IPCCC ) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases ( ICD-11 ). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC . The International Society for Nomenclature of Paediatric and Congenital Heart Disease ( ISNPCHD ), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature . This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature. The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC , as IPCCC continues to evolve

    Seroepidemiology of Human Bocavirus Infection in Jamaica

    Get PDF
    Human bocavirus (HBoV) is a newly identified human parvovirus. HBoV is associated with upper and lower respiratory tract infections and gastroenteritis in children. Little is known about the seroepidemiology of HBoV in populations in the Caribbean.In a cross-sectional study conducted at the University Hospital of the West Indies in Kingston, Jamaica, 287 blood samples were collected from pediatric patients and tested for the presence of HBoV-specific antibody using a virus-like-particle based enzyme-linked immunosorbent assay (ELISA).HBoV-specific antibodies were found to be present in 220/287 (76.7%) of samples collected from the pediatric population. Seroprevalence of HBoV was highest in those ≥2 years old. The seroepidemiological profile suggests that most children are exposed to HBoV during the first two years of life in Jamaica.HBoV infection is common in children in Jamaica. HBoV seroprevalence rates in the Caribbean are similar to those previously reported in other areas of the world

    When Can Antibiotic Treatments for Trachoma Be Discontinued? Graduating Communities in Three African Countries

    Get PDF
    Trachoma, the major cause of infectious blindness in the world, occurs when repeated infections of the ocular strains of Chlamydia trachomatis lead to a cascade of conjunctival scarring, in-turned eyelids and eyelashes, and eventually blindness due to corneal opacity. To reduce the prevalence of infection, the World Health Organization (WHO) advocates at least three annual community-wide distributions of oral antibiotics in affected areas. This approach has proven effective, but there is room to explore other treatment strategies which reduce the use of antibiotics. Here, we used mathematical models and data from three trachoma-endemic countries (Tanzania, The Gambia, and Ethiopia) to analyze different treatment strategies. In the simulations, we show that a graduation strategy can reduce antibiotic distributions more than 2-fold in moderately affected areas. Both treatment strategies provide favorable results in reducing the prevalence of ocular chlamydia, but high costs and the potential for resistance are important issues to consider when administering mass doses of antibiotics

    Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

    Get PDF
    Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations

    Pressure Load: The Main Factor for Altered Gene Expression in Right Ventricular Hypertrophy in Chronic Hypoxic Rats

    Get PDF
    BACKGROUND: The present study investigated whether changes in gene expression in the right ventricle following pulmonary hypertension can be attributed to hypoxia or pressure loading. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish hypoxia from pressure-induced alterations, a group of rats underwent banding of the pulmonary trunk (PTB), sham operation, or the rats were exposed to normoxia or chronic, hypobaric hypoxia. Pressure measurements were performed and the right ventricle was analyzed by Affymetrix GeneChip, and selected genes were confirmed by quantitative PCR and immunoblotting. Right ventricular systolic blood pressure and right ventricle to body weight ratio were elevated in the PTB and the hypoxic rats. Expression of the same 172 genes was altered in the chronic hypoxic and PTB rats. Thus, gene expression of enzymes participating in fatty acid oxidation and the glycerol channel were downregulated. mRNA expression of aquaporin 7 was downregulated, but this was not the case for the protein expression. In contrast, monoamine oxidase A and tissue transglutaminase were upregulated both at gene and protein levels. 11 genes (e.g. insulin-like growth factor binding protein) were upregulated in the PTB experiment and downregulated in the hypoxic experiment, and 3 genes (e.g. c-kit tyrosine kinase) were downregulated in the PTB and upregulated in the hypoxic experiment. CONCLUSION/SIGNIFICANCE: Pressure load of the right ventricle induces a marked shift in the gene expression, which in case of the metabolic genes appears compensated at the protein level, while both expression of genes and proteins of importance for myocardial function and remodelling are altered by the increased pressure load of the right ventricle. These findings imply that treatment of pulmonary hypertension should also aim at reducing right ventricular pressure

    Abortive Autophagy Induces Endoplasmic Reticulum Stress and Cell Death in Cancer Cells

    Get PDF
    Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised
    corecore