109 research outputs found

    Kinetics of ventilation-induced changes in diaphragmatic metabolism by bilateral phrenic pacing in a piglet model

    Get PDF
    Citation: Breuer, T., Hatam, N., Grabiger, B., Marx, G., Behnke, B. J., Weis, J., . . . Bruells, C. S. (2016). Kinetics of ventilation-induced changes in diaphragmatic metabolism by bilateral phrenic pacing in a piglet model. Scientific Reports, 6, 10. doi:10.1038/srep35725Perioperative necessity of deep sedation is inevitably associated with diaphragmatic inactivation. This study investigated 1) the feasibility of a new phrenic nerve stimulation method allowing early diaphragmatic activation even in deep sedation and, 2) metabolic changes within the diaphragm during mechanical ventilation compared to artificial activity. 12 piglets were separated into 2 groups. One group was mechanically ventilated for 12 hrs (CMV) and in the second group both phrenic nerves were stimulated via pacer wires inserted near the phrenic nerves to mimic spontaneous breathing (STIM). Lactate, pyruvate and glucose levels were measured continuously using microdialysis. Oxygen delivery and blood gases were measured during both conditions. Diaphragmatic stimulation generated sufficient tidal volumes in all STIM animals. Diaphragm lactate release increased in CMV transiently whereas in STIM lactate dropped during this same time point (2.6 vs. 0.9 mmol L-1 after 5:20 hrs; p < 0.001). CMV increased diaphragmatic pyruvate (40 vs. 146 mu mol L-1 after 5:20 hrs between CMV and STIM; p < 0.0001), but not the lactate/pyruvate ratio. Diaphragmatic stimulation via regular electrodes is feasible to generate sufficient ventilation, even in deep sedation. Mechanical ventilation alters the metabolic state of the diaphragm, which might be one pathophysiologic origin of ventilator-induced diaphragmatic dysfunction. Occurrence of hypoxia was unlikely

    The combination of smoking with vitamin D deficiency impairs skeletal muscle fiber hypertrophy in response to overload in mice

    Get PDF
    Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet were exposed to CS or room air for 18 wk. Six weeks after initiation of smoke or air exposure, sham surgery or denervation of the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hypertrophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell infiltration (P < 0.05), independently of diet. Maximal exercise capacity, whole body strength, in situ plantaris muscle force, and key markers of hypertrophic signaling (Akt, 4EBP1, and FoxO1) were not significantly affected by smoking or diet. The increase in plantaris muscle fiber cross-sectional area in response to overload was attenuated in vitamin D-deficient CS-exposed mice (smoking Ă— diet interaction for hypertrophy, P = 0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespective of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may be less likely to respond to a training program

    Copper-Heparin Inhalation Therapy To Repair Emphysema: A Scientific Rationale

    Get PDF
    Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs. Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5 and lysyl oxidase-like 1 in the elastin restoration process is discussed, and it is argued that copper deficiency is a plausible reason for failing elastin repair in emphysema patients. Since copper-dependent lysyl oxidases crosslink elastin as well as collagen fibers, copper supplementation stimulates accumulation of both proteins in the extracellular matrix. Restoration of abnormal elastin fibers in emphysematous lungs is favorable, whereas stimulating pulmonary fibrosis formation by further increasing collagen concentrations and organization is detrimental. Heparin inhibits collagen crosslinking while stimulating elastin repair and might therefore be the ideal companion of copper for emphysema patients. Efficacy and safety considerations may lead to a preference of pulmonary administration of copper-heparin over systemic administration

    The combination of smoking with vitamin D deficiency impairs skeletal muscle fiber hypertrophy in response to overload in mice.

    Get PDF
    Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet were exposed to CS or room air for 18 wk. Six weeks after initiation of smoke or air exposure, sham surgery or denervation of the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hypertrophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell infiltration (P P = 0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespective of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may be less likely to respond to a training program.NEW & NOTEWORTHY Plantaris hypertrophy caused by compensatory overload after denervation of the soleus and gastrocnemius muscles showed increased mass and fiber dimensions, but to a lesser extent when vitamin D deficiency was combined with cigarette smoking. Fatigue resistance was elevated in hypertrophied plantaris, irrespective of diet or smoking, whereas physical fitness, hypertrophic markers, and in situ plantaris force were similar. These data showed that the hypertrophic response to overload is attenuated when both conditions are combined

    Copper-heparin inhalation therapy to repair emphysema: A scientific rationale

    Get PDF
    Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs. Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5 an
    • …
    corecore