15,850 research outputs found

    Simulations of Electron Capture and Low-Mass Iron Core Supernovae

    Full text link
    The evolutionary pathways of core-collapse supernova progenitors at the low-mass end of the spectrum are beset with major uncertainties. In recent years, a variety of evolutionary channels has been discovered in addition to the classical electron capture supernova channel of super-AGB stars. The few available progenitor models at the low-mass end have been studied with great success in supernova simulations as the peculiar density structure makes for robust neutrino-driven explosions in this mass range. Detailed nucleosynthesis calculations have been conducted both for models of electron capture supernovae and low-mass iron core supernovae and revealed an interesting production of the lighter trans-iron elements (such as Zn, Sr, Y, Zr) as well as rare isotopes like Ca-48 and Fe-60. We stress the need to explore the low-mass end of the supernova spectrum further and link various observables to understand the diversity of explosions in this regime.Comment: 7 page, 3 figures, proceedings of the conference "The AGB-Supernova Mass Transition", to appear in Memorie della Societ\`a Astronomica Italian

    Improving sensitivity of oral fluid testing in IgG prevalence studies: application of mixture models to a rubella antibody survey

    Get PDF
    A method for the analysis of age-stratified antibody prevalence surveys is applied to a previously reported survey of antibody to rubella virus using oral fluid samples in which the sensitivity of the assay used was shown to be compromised. The age-specific distribution of the quantitative results of antibody tests using oral fluids is modelled as a mixture of strong positive, weak positive and negative components. This yields maximum likelihood estimates of the prevalence at each age and demonstrates that, when used in conjunction with mixture modelling techniques, the results of antibody prevalence studies using oral fluids accurately reflect those obtained using sera

    Evaluation of a measles vaccine campaign by oral-fluid surveys in a rural Kenyan district: interpretation of antibody prevalence data using mixture models

    Get PDF
    We evaluated the effectiveness of a measles vaccine campaign in rural Kenya, based on oral-fluid surveys and mixture-modelling analysis. Specimens were collected from 886 children aged 9 months to 14 years pre-campaign and from a comparison sample of 598 children aged 6 months post-campaign. Quantitative measles-specific antibody data were obtained by commercial kit. The estimated proportions of measles-specific antibody negative in children aged 0–4, 5–9 and 10–14 years were 51%, 42% and 27%, respectively, pre- campaign and 18%, 14% and 6%, respectively, post-campaign. We estimate a reduction in the proportion susceptible of 65–78%, with ~85% of the population recorded to have received vaccine. The proportion of ‘weak’ positive individuals rose from 35% pre-campaign to 54% post-campaign. Our results confirm the effectiveness of the campaign in reducing susceptibility to measles and demonstrate the potential of oral-fluid studies to monitor the impact of measles vaccination campaigns

    Sensitivity of the superconducting state in thin films

    Get PDF
    For more than two decades, there have been reports on an unexpected metallic state separating the established superconducting and insulating phases of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here, we show that for two very different thin-film superconductors, amorphous indium oxide and a single crystal of 2H-NbSe2, this metallic state can be eliminated by adequately filtering external radiation. Our results show that the appearance of temperature-independent, metallic-like transport at low temperatures is sufficiently described by the extreme sensitivity of these superconducting films to external perturbations. We relate this sensitivity to the theoretical observation that, in two dimensions, superconductivity is only marginally stable

    Arresting bubble coarsening: A two-bubble experiment to investigate grain growth in presence of surface elasticity

    Full text link
    Many two-phase materials suffer from grain-growth due to the energy cost which is associated with the interface that separates both phases. While our understanding of the driving forces and the dynamics of grain growth in different materials is well advanced by now, current research efforts address the question of how this process may be slowed down, or, ideally, arrested. We use a model system of two bubbles to explore how the presence of a finite surface elasticity may interfere with the coarsening process and the final grain size distribution. Combining experiments and modelling in the analysis of the evolution of two bubbles, we show that clear relationships can be predicted between the surface tension, the surface elasticity and the initial/final size ratio of the bubbles. We rationalise these relationships by the introduction of a modified Gibbs criterion. Besides their general interest, the present results have direct implications for our understanding of foam stability

    Geometric analysis of noisy perturbations to nonholonomic constraints

    Full text link
    We propose two types of stochastic extensions of nonholonomic constraints for mechanical systems. Our approach relies on a stochastic extension of the Lagrange-d'Alembert framework. We consider in details the case of invariant nonholonomic systems on the group of rotations and on the special Euclidean group. Based on this, we then develop two types of stochastic deformations of the Suslov problem and study the possibility of extending to the stochastic case the preservation of some of its integrals of motion such as the Kharlamova or Clebsch-Tisserand integrals

    Extreme Sensitivity of the Superconducting State in Thin Films

    Full text link
    All non-interacting two-dimensional electronic systems are expected to exhibit an insulating ground state. This conspicuous absence of the metallic phase has been challenged only in the case of low-disorder, low density, semiconducting systems where strong interactions dominate the electronic state. Unexpectedly, over the last two decades, there have been multiple reports on the observation of a state with metallic characteristics on a variety of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here we show that for two very different thin-film superconductors, amorphous indium-oxide and a single-crystal of 2H-NbSe2, this metallic state can be eliminated by filtering external radiation. Our results show that these superconducting films are extremely sensitive to external perturbations leading to the suppression of superconductivity and the appearance of temperature independent, metallic like, transport at low temperatures. We relate the extreme sensitivity to the theoretical observation that, in two-dimensions, superconductivity is only marginally stable.Comment: 10 pages, 6 figure

    Un-reduction

    Full text link
    This paper provides a full geometric development of a new technique called un-reduction, for dealing with dynamics and optimal control problems posed on spaces that are unwieldy for numerical implementation. The technique, which was originally concieved for an application to image dynamics, uses Lagrangian reduction by symmetry in reverse. A deeper understanding of un-reduction leads to new developments in image matching which serve to illustrate the mathematical power of the technique.Comment: 25 pages, revised versio

    Multi-D Simulations of Ultra-Stripped Supernovae to Shock Breakout

    Full text link
    The recent discoveries of many double neutron star systems and their detection as LIGO-Virgo merger events call for a detailed understanding of their origin. Explosions of ultra-stripped stars in binary systems have been shown to play a key role in this context and have also generated interest as a potential explanation for rapidly evolving hydrogen-free transients. Here we present the first attempt to model such explosions based on binary evolution calculations that follow the mass transfer to the companion to obtain a consistent core-envelope structure as needed for reliable predictions of the supernova transient. We simulate the explosion in 2D and 3D, and confirm the modest explosion energies ~10^50erg and small kick velocities reported earlier in 2D models based on bare carbon-oxygen cores. The spin-up of the neutron star by asymmetric accretion is small in 3D with no indication of spin-kick alignment. Simulations up to shock breakout show the mixing of sizeable amounts of iron group material into the helium envelope. In view of recent ideas for a mixing-length treatment (MLT) of Rayleigh-Taylor instabilities in supernovae, we perform a detailed analysis of the mixing, which reveals evidence for buoyancy-drag balance, but otherwise does not support the MLT approximation. The mixing may have implications for the spectroscopic signatures of ultra-stripped supernovae that need to be investigated in the future. Our stellar evolution calculation also predicts presupernova mass loss due to an off-centre silicon deflagration flash, which suggests that supernovae from extremely stripped cores may show signs of interactions with circumstellar material.Comment: 15 pages, 15 figures, submitted to MNRA

    Linux kernel compaction through cold code swapping

    Get PDF
    There is a growing trend to use general-purpose operating systems like Linux in embedded systems. Previous research focused on using compaction and specialization techniques to adapt a general-purpose OS to the memory-constrained environment, presented by most, embedded systems. However, there is still room for improvement: it has been shown that even after application of the aforementioned techniques more than 50% of the kernel code remains unexecuted under normal system operation. We introduce a new technique that reduces the Linux kernel code memory footprint, through on-demand code loading of infrequently executed code, for systems that support virtual memory. In this paper, we describe our general approach, and we study code placement algorithms to minimize the performance impact of the code loading. A code, size reduction of 68% is achieved, with a 2.2% execution speedup of the system-mode execution time, for a case study based on the MediaBench II benchmark suite
    corecore