878 research outputs found

    Objective Definition of Rosette Shape Variation Using a Combined Computer Vision and Data Mining Approach

    Get PDF
    Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Elliptical Squeezed States and Rydberg Wave Packets

    Get PDF
    We present a theoretical construction for closest-to-classical wave packets localized in both angular and radial coordinates and moving on a keplerian orbit. The method produces a family of elliptical squeezed states for the planar Coulomb problem that minimize appropriate uncertainty relations in radial and angular coordinates. The time evolution of these states is studied for orbits with different semimajor axes and eccentricities. The elliptical squeezed states may be useful for a description of the motion of Rydberg wave packets excited by short-pulsed lasers in the presence of external fields, which experiments are attempting to produce. We outline an extension of the method to include certain effects of quantum defects appearing in the alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199

    Keplerian Squeezed States and Rydberg Wave Packets

    Get PDF
    We construct minimum-uncertainty solutions of the three-dimensional Schr\"odinger equation with a Coulomb potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three dimensions. They move on elliptical keplerian trajectories and are appropriate for the description of the corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in experiments.Comment: accepted for publication in Physical Review

    Radial Squeezed States and Rydberg Wave Packets

    Get PDF
    We outline an analytical framework for the treatment of radial Rydberg wave packets produced by short laser pulses in the absence of external electric and magnetic fields. Wave packets of this type are localized in the radial coordinates and have p-state angular distributions. We argue that they can be described by a particular analytical class of squeezed states, called radial squeezed states. For hydrogenic Rydberg atoms, we discuss the time evolution of the corresponding hydrogenic radial squeezed states. They are found to undergo decoherence and collapse, followed by fractional and full revivals. We also present their uncertainty product and uncertainty ratio as functions of time. Our results show that hydrogenic radial squeezed states provide a suitable analytical description of hydrogenic Rydberg atoms excited by short-pulsed laser fields.Comment: published in Physical Review
    • 

    corecore