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Abstract

Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security
because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes.
However, plants are morphologically complex and identification of meaningful traits from automatically acquired image
data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this
approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard
computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes
growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good
discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5
principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and
statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse
variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines
for image processing and data analysis have been implemented using open source software. Source code for data analysis is
written using the R package. The equations to calculate image descriptors have been also provided.
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Introduction

The goal of this study was to use a computer vision and data

mining approach to compare the rosette shapes of the founders of

a Multiparent Advanced Generation Inter-Cross (MAGIC)

population. A genetic analysis of the same population was

performed and reported previously [1]. Objective computer-aided

phenotyping has been proposed as a solution to the genotype-

phenotype bottleneck [2], but there remain numerous technical

challenges with regard to its implementation at the whole

organism level. However, there has been little exploration of the

ability of computer vision techniques to define and discriminate

between phenotypes.

We chose Arabidopsis rosettes as our experimental material for

three main reasons. First, the rosettes in this species (under our

growth conditions) grow close to the ground and can be treated

essentially as 2-D objects, simplifying image acquisition and

processing. Second, previous studies indicate that there is

significant shape variation between accessions. Natural variation

in continuously varying traits has been shown for morphological

traits and for responses to stimuli. Examples of the former are

morphological comparisons during development between Ler-0,

Col-0 and Ws-0 ecotypes [3], quantitative trait loci (QTL) analysis

of leaf and floral organ size of 162 recombinant inbred lines (RIL)

from a reciprocal cross between Ler and Cvi [4] and seed size of

the iku2-1, fis2-1, arf2, pAP1::ARF2 mutants and Col-0 and Ler-0

ecotypes [5]. Examples of the latter are the effects of drought, low

temperature and differing levels of UV-B on chlorophyll-fluores-

cence on growth [6] and the natural variability of 23 accessions in

response to nitrogen [7]. Third, Arabidopsis is a widely used model

system with sophisticated genetic and genomic resources [8]

available for dissecting biological processes. Forward genetic

approaches have been used to study mutants with strong

phenotypic effects providing insight into the underlying molecular

functions. While this approach is extremely useful as a research

tool, commercial plant breeding often requires exploitation of

continuous variation. Analysis of continuous variation in breeding

populations is more demanding, but effective automation of the

phenotype measurements would have huge advantages for crop

improvement and food security. Arabidopsis is also a good model for

studying continuous variation, with the advantage of thoroughly

investigated genomics [9,10]. The native range is North-Western

Eurasia and it has recently colonised other parts of the world

during the Columbian Exchange [11]. Local populations have

often diverged, to a degree depending on factors such as time of

separation and differential selection. The species is therefore a

useful model to study natural variation, its underlying genetic basis

and its consequences.

Natural variants provide material for studying genome evolu-

tion and the genetic dissection of complex traits. The Arabidopsis
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lines used here are the inbred parental lines of a MAGIC mapping

population, which have been selected from a wide range of

locations and cover a range of genetic diversity [12]. The MAGIC

population contains several hundred recombinant inbred lines

(RILs) descended from the 19 founder lines, via a series of defined

intercrosses. These RILs and the 19 founders have been genotyped

and previously scored for development-related traits such as

flowering time [1].

High throughput methods that are suitable for measuring

continuous variation have been applied to Arabidopsis. For

example, a single time point study characterised Arabidopsis plants

grown in vitro by analysing rosettes, leaves and leaf cells in 111

mutants and three wild-type accessions [13]. In another study,

rosette areas of ecotypes were analysed across developmental

stages using an automated phenotyping pipeline [14]. Responses

to soil water deficit of natural accessions have been reported from

the PHENOPSIS platform [15]. Similarly, GROWSCREEN

investigated growth potential of starch-free mutants of Arabidopsis

[16]. These approaches often use non-destructive image analysis as

an element of growth measurements. However, for complex

biological objects there is no generally accepted method of

parameterising shapes, which makes quantification of change

and determination of significance of differences difficult, particu-

larly for characters subject to continuous variation. In Arabidopsis

some aspects, such as leaf shape [17,18] have been studied in

detail, but usually by destructive methods. Also, the technique

used (principal component analysis of points on the leaf margin) is

difficult to apply to overlapping composite structures that change

in shape as the plant grows, as in Arabidopsis rosettes (Figure 1).

Using the 19 parental lines as a test population, we investigate

the ability of a range of morphological descriptors developed for

image analysis [19] to discriminate rosette images, an exercise not

previously reported for Arabidopsis. We used machine-vision

methods to analyse shape descriptors extracted from segmented

images of rosettes [20] and provided a wider range of parameters

with definitions of their calculations than previously reported. This

method does not require any specialised equipment for image

capture and is therefore generally applicable. Two different

commercially available software packages were evaluated and used

to extract descriptors. This allowed us to compare the accessions

according to their phenotypic diversity and to address the

following questions: 1) Are shape descriptors time-dependent,

ecotype-dependent or both? 2) What are the most important

descriptors of rosette shape among the set tested? 3) Do shape

descriptors differ between the ecotypes? 4) If shape descriptors

change with time, is the direction and amount of change similar in

all ecotypes? We show that shape descriptors can be used to

parameterise and determine significant differences between rosette

shapes of Arabidopsis lines and we discuss the potentially wider role

of these characters. We also compare our data with that of a

previous study in different media and at a single time point [13], to

assess the generalizable ability of these results This provides a cost-

effective, scalable method to parameterise shape that can be used

non-destructively on whole plants.

Materials and Methods

Plant material
Seeds of 19 genetically contrasting but individually uniform

ecotypes [12] (EDi-0, Can-0, WS-0, Hi-0, Zu-0, Po-0, Sf-2, Wil-2,

Oy-0, Kn-0, Ct-1, Wu-0, Tsu-0, Col-0, Rsch-4, No-0, Bur-0, Ler-

0, Mt-0) of Arabidopsis thaliana were sown on moist Levington F2

compost (Scotts UK Professional, Bamford, Suffolk, UK) in 24 pot

(each pot 51 by 47 by 47 mm) trays kept at 4C for one week before

moving to a controlled environment room (CER) at 23uC day/

20uC night, day/night (8/16 h) and 110 mmol m22 s21 PPFD

(Sylvania VHO fluorescent tubes). These conditions were chosen

to be reasonably similar to the conditions recommended in a

laboratory manual for the growth of Arabidopsis (16–25uC, 120–

150 mmol m22 s21 PPFD), with a day length of less than 12 hours

Figure 1. Images of representative plants of the 19 parental lines [1] at 28 DAS. (A) EDi-0, (B) Can-0, (C) WS-0, (D) Hi-0, (E) Zu-0, (F) Po-0, (G)
Sf-2, (H) Wil-2, (I) 0y-0, (J) Kn-0, (K) Ct-1, (L) Wu-0, (M) Tsu-0, (N) Col-0, (O) Rsch-4, (P) No-0, (Q) Bur-0, (R) Ler-0 and (S) Mt-0.
doi:10.1371/journal.pone.0096889.g001
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to avoid acceleration of reproductive development [21]. Twelve

replicates were grown per ecotype and trays were watered with a

conventional watering can. Trays were also moved and rotated

regularly to randomise local environmental variables and water-

ing. No further nutrients were supplied during the course of the

experiment.

Data acquisition
Photographs of rosettes were taken using a Panasonic DMC-G1

camera mounted horizontally on a tripod at a resolution of

300064000 pixels on 17, 22, 25, 28 and 30 days after stratification

(DAS), t1 to t5 respectively. Images were taken between 10.20 am

and 11.20 am in the growth chamber where light and temperature

were kept constant. A composite image of typical plants on 28

DAS is shown in Figure 1. Using an internal length reference, a

scaling factor was calculated (average 7.31 pixels per mm SEM

0.104) and applied to each image to compensate for any slight

variation in the position of the tray relative to the camera and to

convert pixel-based measurements to dimensions to facilitate

comparisons with other work. All measurements were made in the

early stages of plant development, before significant floral

development, when it was reasonable to analyse the rosette as a

two dimensional structure.

Image analysis
Image processing was performed using LemnaGrid software

from LemnaTec [22] in the following sequence: 1) Nearest

neighbour foreground/background colour separation was used to

classify pixels. Two sets of colour intensities, corresponding to

foreground (target) and to background (non target) are selected.

RGB pixels matching selected intensities are mapped into the

image. A search around mapped pixels is performed to identify

pixels with similar intensities that might be part of the foreground/

background regions. Once the search is performed, the image is

converted to binary, where 1 is the target (plant) and 0 the

background (compost, tray, etc). 2) Morphological techniques were

then applied to deal with pixels incorrectly classified [19]. First,

morphological erosion was applied to remove small and isolated

pixel regions incorrectly classified as plant. Second, morphological

dilation was applied to correct for those pixels located in the

border of the images that were incorrectly classified as back-

ground. 3) A final filter operation used the area of the pots to mark

approximately the region occupied by each plant in the tray, and

foreground pixels outside this region were deleted. Once the

images were segmented, 20 image features (Table 1 shows the list

of features - descriptors) describing the geometry, shape and size of

rosettes were extracted. Some of these features are illustrated in

Figure 2 (an example set is shown in Figure S1). Table S2 shows

the values corresponding to the descriptors highlighted in Figure

S2. In Methods S2 further details of the specific calculations used,

their labels in the LemnaTec software, their equivalents in Matlab

[23] and the complete data table of image features are provided.

The features used to describe shape can be grouped into two

classes, those with a simple meaning and definition and those

whose interpretation is more complex. For example, comparing

‘Area’ and ‘Roundness’: ‘Area’ is the pale green region comprising

the rosette within the rectangle in Figure 2; ‘Roundness’,

indicating circularity of the object, is more complex as it is given

by the ratio of Circumference2 to Area, where ‘Circumference’ is

the total length of the lines forming the outside of the rosette.

Simple and complex features are necessary to give a complete

description of the shape of the object and will be used to quantify

variation between shapes of parental lines. The relationship

between the shape descriptors over a range of rosette shapes is

illustrated in Figure S1. In addition, Relative Rosette Area Growth

Rate (RRAGR) was calculated as:

RRAGR~
log Areatiz1

� �
{ log Areati

� �

tiz1{ti

ð1Þ

where Areati
is the rosette area at time ti, with ti as defined above.

RRAGR were plotted and analysed at the mean time for RRAGR

calculation.

Data processing and analysis
The descriptors were loaded into a dataset and after Shapiro

normality tests appropriate loge transformation were applied when

necessary to produce normality (Table 1). The Bonferroni Outlier

Test was applied to identify and remove outliers that could bias the

results. A linear mixed effect (lme) model for repeated measure-

ments [24] was fitted for each character (Eq. 2). This modelling

approach was favoured against other alternatives as it is

appropriate when dealing with time series, when the variances

of the observations are unequal or when there is a degree of

correlation between measurements.

Yij~b1x1ijz . . . zbpxpijzbi1z1ijz . . . zbiqzqijzeij ð2Þ

eij*N 0,s2lijj

� �
,Cov eij , ij0

� �
{s2lijj0

Where Yij is the response variable for the jth of ni observations in

the ith of M ecotypes

x1ij, …, xpij are the fixed-effect regressors for observation j in

group i

bi1, …, biq are the random-effect coefficients for group i, i = 1, ..,

q number of groups

z1ij, …, zqij are the random-effect regressors

bi, …, bp are the fixed-effect coefficients, i = 1, .., p number of

effects

eij is the error for observation j in group i

s2lijj’k are the covariances between errors in group i. If the

observations in a group represent longitudinal data on a single

individual (e.g. observations collected over time), then the structure

of the l’s is specified to capture autocorrelation among the errors.

The post-hoc Tukey test was applied to perform pairwise

analysis over the fitted models P-values were adjusted using the

Bonferroni multiple test correction (P,0.05).

ReliefF [27] and Principal Component Analysis (PCA), two

contrasting methods of determining the relative importance of

multivariate characters were used to compare variability of shape

descriptors. ReliefF estimates the quality of attributes in classifi-

cation problems with strong interdependencies and PCA (with

variables scaled to zero mean and unit variance) was used to

determine underlying grouping variables which summarise vari-

ability in the data. All statistical analysis were carried out using the

R [25] and the Weka [26] packages.

Results

The evaluation of time courses of ecotype shape descriptors

proceeded in three stages: Firstly, differences in shape parameters

between the ecotypes (an ecotype effect) were determined.

Secondly, changes with time were across all ecotypes (a time

effect) were assessed, and thirdly differences in the changes with

time between ecotypes (an interaction effect e.g. time x ecotype)

Objective Definition of Rosette Shape Variation
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were checked. Inspection of plots of the shape descriptors across

time and ecotype were used to establish general characteristics of

the data (see Figure 3 for an example plots and the full set in

Figure S2). They also helped design statistical models for each

descriptor. These plots clearly fall into two groups (Table 1), one

whose time course was continually rising similar to that of Area

(Area group) and those whose time courses were much more

variable in slope and direction (the NonArea group). More details

of these groups are in the ‘Analysis of descriptors over time’ section

below. The Area Group characters have a quadratic time course,

suggesting that a quadratic effect of time should be included in any

statistical model. However, we recognise this is a simplification of

the complete growth curve, possibly sigmoid, for which we have

partial data only. The same plots also showed that shape

descriptors, for both groups: a) changed over time (not horizontal

lines across the time), suggesting time dependency; b) were

significantly different between ecotypes (lines touched or over-

lapped), suggesting ecotype dependency and c) were time and

ecotype dependent.

As the experiment was a split-plot design replicated in time (to

asses changes over time), a linear mixed effect model that took in

consideration the effects of the repeated measurements design and

the variance and covariance of each shape descriptor was used.

The model included a random intercept for each plant, an ecotype

effect, a time effect, and an ecotype-time interaction effect. In

addition for the Area group DAS squared was added to the model

to allow for the quadratic trend with time. Eq. 3 is the model of

Compactness for observation j in the group i at t time point. Eq. 4

is the model of Area for observation j in the group i at t time point.

Compactnessijt~b0(1)zb1ecotypeijb2DAStjzeijt ð3Þ

Areaijt~b0(1)zb1ecotypeijb2DAStjzb1ecotypeijb2DAS2
tjzeijt ð4Þ

Results of the lme models for each shape descriptor confirmed

that (a) there was a significant time effect (P,0.05), suggesting time

dependency, (b) there was a significant ecotype effect (P,0.05),

suggesting ecotype dependency and (c) there was a significant

interaction effect (P,0.05) between time and ecotype. Plots of

residuals showed normally distributed errors with homogenous

variances providing an indication of the goodness of fit of the

model describing each shape descriptor.

Figure 3 shows time courses from fitted models for ‘Area’,

‘Circumference’, ‘Compactness’ and ‘Roundness’ for selected

ecotypes.

To determine over which time steps the differences in the shape

parameters were significant across all ecotypes, a pairwise Tukey

test over the lme model was applied between DAS. ‘Normsmall-

pax’, ‘Normlargepax’ and ‘Normrotmo’ showed significant differ-

ences only between t1 and t2. ‘Mindistcenbdy’ showed significant

differences only between t2 and t3. ‘Excentricity’ showed

significant differences only between t3 and t4. ‘Compactness’ is

relatively constant with time and generally becomes stable after t2
suggesting that ‘Compactness’ is defined early in development.

Images of rosettes (Figure 4A) contrast the low ‘Compactness’ in

Ct-1 due to long petioles with the greater ‘Compactness’ of No-0

Figure 2. Example features extracted from one plant of EDi-0. (A) normsmallpax and lormlargepax, (B) vrectsizex and vrectsizey, (C) maxdiam,
(D) outline of convex hull, from which convhullcirc and convhullarea are determined (E) minrectarea, (F) mincirclediam.
doi:10.1371/journal.pone.0096889.g002
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with its much more closely spaced leaves. Other descriptors such

as ‘RRAGR’ show most significant (P,0.01) differences between

the pairs ‘Tsu-0/Wil-2, ‘Tsu-0/No-0’ and ‘Tsu-0/Ler-0’ (Figure

S7). Differences between all-time points were significant (P,0.05).

‘Area’ was significantly different between all time steps (P,0.05),

as would be expected for a size parameter of growing plants

(Figure 4). Between ecotypes ‘Area’, showed the most significant

differences (P,0.01) between the pairs ‘No-0/Bur-0’, ‘Bur-0/Wu-

0’ and ‘EDi-0/No-0’. Images of Bur-0 and Wu-0 have been added

to Figure 4C to illustrate the greater size of the rosette in Bur-0

than Wu-0. Figures 4B and 4D use box plots to illustrate the

changes in ‘Compactness’ and ‘RRAGR, and the variation

between replicates, for each ecotype across time.

Having established that shape descriptors changed at different

rates through time and that this pattern of change differed

between ecotypes, we asked whether ecotypes could be grouped on

the basis of their shape parameters. Visual inspection of radar plots

for each ecotype (Figure 5) indicate that Bur-0 and EDi-0, No-0

and Wu-0, Po-0 and Can-0 share a similar overall pattern of

parameters, while Po-0 and Can-0 are very similar in terms of

‘Compactness’ and ‘Area’. The plots also show that No-0 and Ler-

0 are both quite compact but Ler-0 has a greater rosette ‘Area’.

The radar plot is an excellent way to rapidly identify groups that

are common at a given descriptor.

Feature selection
PCA was performed per time point to identify meaningful

underlying variables and whether they show the same pattern

across time. At 17 DAS 54.26% of the variation was captured by

the first principal component and 19.53% by the second,

(Figure 6A). PCA plots for 22, 25, 28 and 32 DAS are shown in

Figure S3. In summary, the major contributors to PC1 were

‘Maxdiam’, ‘Conhullcirc’, ‘Circumference’, ‘Mincirclediam’,

‘Bdrycount’, ‘Minrectarea’ and ‘Conhullarea’. The major con-

tributors of PC2 were ‘Bdrytoarearatio’, ‘Normlargepax’, ‘norm-

rotmo’ and ‘Compactness’. PC3 captured 14.3% of the variation

and the major contributors were: ‘Normsmallpax’, ‘Paxratio’ and

‘Excentricity’. Variation captured in further components was:

PC4: 5.14%, PC5: 2.68%, PC6: 2.04% and PC7 to PC20’s

summed was 2.04%. Interestingly, the major contributor of PC4

was ‘Mindistcenbdy’ (contributing 84%) suggesting a more

detailed look to this descriptor in future analysis. Figures S4A–D

show standard contributions for each descriptor.

PCA of all observations labelled by time showed that there was

more variability later than earlier in growth (Figure S5).

Further, we applied the ReliefF method for attribute estimation

in the regression to reduce the dimensionality of the data. This

method assesses a set of features in a dataset and ranks them

according to their power to accurately differentiate classes (i.e.

ecotypes) in the dataset. The test ranked ‘Compactness’,

‘Normrotmo’ and ‘Normlargepax’ in first, second and third place

and ‘Conhullcirc’ in last, confirming that ‘Compactness’ is an

important discriminatory descriptor of rosette shape. This analysis

also shows that ‘Area’ and ‘Area-related’ descriptors are not good

discriminators of ecotypes. The Area plots in Figure S5 shows a

similar trend for each ecotype.

Table 1. Shape descriptors extracted from segmented Arabidopsis rosettes.

Id1 Name Description Group2 Trans3 Unit

1 Mincirclediam Diameter of the smallest circle the rosette would pass through without touching. A loge mm

2 Normsmallpax Ratio of the Sum of distances of all pixels from smaller axis in direction of the larger axis
normalised to rosette area

N Ratio

3 Normlargepax Ratio of the Sum of distances of all pixels from the larger axis in direction of the smaller axis.
normalised to rosette area

N Ratio

4 Minrectarea Area of smallest rectangle of any orientation covering rosette A loge mm2

5 Mindistcenbdy The distance between the centroid and the nearest point on the rosette boundary N mm

6 Vrectsizey Height of the smallest vertical rectangle covering the rosette. A loge mm

7 Vrectsizex Width of the smallest vertical rectangle covering the rosette A loge mm

8 Compactness Rosette Area/Conhullarea N Ratio

9 Normrotmo Moment of inertia of rosette around centroid N Ratio

10 Area Area of rosette A loge mm2

11 Paxratio Normlargepax/Normsmallpax N Ratio

12 Circumference Perimeter of rosette excluding holes A loge mm

13 Excentricity Ratio of Normlargepax to Normsmallpax N Ratio

14 Maxdiam Maximum distance between two points on the rosette boundary A loge mm

15 Roundness Circumference2/Area N Ratio

16 Bdryround Bdrycount2/area. N loge Ratio

17 Bdrycount Boundary of rosette including perimeter and holes A loge mm

18 Bdrytoarearatio Bdrycount/Area N mm21

19 Conhullcirc Length of convex hull, the line with no concave sections surrounding the rosette A loge mm

20 Conhullarea Area included in Conhullcirc A loge mm2

1id is index to descriptors used in Figure 5
2Indicates whether descriptor is in the Area (A) or non-Area group (N)
3Indicates if data were transformed using a loge scale.
doi:10.1371/journal.pone.0096889.t001
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Growth patterns of ecotypes
To evaluate the extent to which the patterns of growth were

influenced by the time, data points classified by time were added as

supplementary information to the PCA analysis. Results in Figure

S5 show data points are located at the centre of the plot at an early

stage and become scattered around at a later stages which suggest

that plants showed more variability as the get bigger. In addition

to time, ecotype variation was also analysed, Figure 6 shows

results. Some points to highlight from this analysis are: there were

significant differences (P,0.05) between the ecotype’s shapes

(given by the size of the square, the smaller the square the more

significant). Bur-0, EDi-0 and WS-0 are on the same PCA

dimensions suggesting similarities between them in relation to

shape. This result is consistent to what is shown in the radar plots

of Figure 5 where Bur-0 and EDi-0 show similar patterns. Ct-1

shows similarities with the other ecotypes at 17 DAS but soon its

data points are scatter along dimension 2 (Figure S6A–D). Data

points of Oy-0, Ler-0, and Zu-0 are on the same coordinates of

‘Compactness’ (Figure S6A–D) which suggests that these three

ecotypes are correlated in ‘Compactness’. To help in the analysis,

rosette images of some ecotypes were superimposed on the plot.

For example, data points corresponding to No-0 are on the

coordinates of ‘Compactness’ and data points corresponding to

Ct-1 are at the opposite site. This data organization suggest low

correlation in ‘Compactness’ which is confirmed by the rosettes

images of Ct-1 and No-0. Similarly, Bur-0’s data points are on the

coordinates of ‘Area’ and Wu-0 are at the opposite site, suggesting

low correlation in ‘Area’ which is confirmed by the rosettes images

of Bur-0 Wu-0.

Analysis of descriptors over time
Phenotypic traits can be classified as static or dynamic. Static

traits are often complex characteristics that tend to be measured at

a single point in time (for example, yield), whereas dynamic traits

(growth and other spatiotemporal changes) change with and can

reveal different trajectories to similar end points [28,29]. We

analysed the trajectory of each descriptor over time and found two

main patterns. The first pattern, the ‘Area’ group, defined above

(Table 1) contained descriptors with a continually increasing plant

size component as seen for ‘Area’ (Figure 3 and S2). The

trajectories appeared to be parallel between ecotypes with a time

displacement, Bur-0 having the greatest and No-0 the smallest

‘Area’ at the last measurement. Comparisons indicate that the

increases in ‘Area’ are attributable to growth rather than changes

in plant shape as would be the case, for example, if petiole

elongation played a major role. Areas were already different when

seedlings were first imaged and these differences were largely

maintained during the period of the experiment. Increased ‘Area’

at first measurement may be the result of increased seed size at

sowing as seeds of Bur-0 have been reported as larger than those of

Col-0 and Ler-0 [5], However, seed areas (a measure of seed size)

were not correlated with rosette area from multiple replicates of

each ecotype and from two batches of seeds from the same source

as used here.

Figure 3. Time course for selected genotypes from statistical model for (A) loge Area (B) loge Circumference (C) Compactness and
(D) Roundness.
doi:10.1371/journal.pone.0096889.g003
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The second group, the NonArea group, (Table 1) show variable

patterns of change (Figures 7B and S2). This group includes

descriptors of shape that relate to how the area is distributed to

form the resultant rosette shape. Rsch-4 had the greatest

‘Mindistcenbdy’ and Can-0 the lowest (Figure S2). Within the

overall pattern of compactness described above, there were

noticeable differences between ecotypes with No-0 decreasing less

than Ct-1 (Figure 7B). ‘Paxratio’ generally decreases over time

with Sf-0 having the lowest and Bur-0 the highest. However, Ct-1

shows a different pattern, increasing moderately until t4 and

thereafter decreasing moderately. ‘Roundness’ increases over time

with Bur-0 being the highest and No-0 the lowest. Bur-0 becomes

rounder at every time step, which contrasts with all the other

ecotypes. ‘Bdryround’ increases over time with Bur-0 increasing

fastest and Ler-0 increasing more slowly. ‘Excentricity’ decreases

over time with Bur-0 being the most rapid and Sf-2 the slowest.

‘Bdrytoarearatio’ is defined as the length of the outline divided by

the area, and this relationship would be expected decrease as the

plant grows on purely mathematical grounds. The rate of decline

in the ‘Bdrytoarearatio’ was greater in Ler-0 than in Ct-1, the two

ecotypes display extreme values for this parameter. See distribu-

tion of shape descriptors over time in Figure S2.

Comparisons with a previous study
One of the principal problems in using a new approach such as

the morphological descriptors used here is determining if the

descriptors are universal To investigate this we have compared our

results with a similar approach used previously [13]. Whilst both

approaches were used on similar material, i.e. the rosettes of young

Arabidopsis plants, there were important differences in the range of

material used and cultivation (summarised in Table S3) and the

previous data was collected at only one time point. Some

comparable descriptors were present in both studies although in

detail some were calculated slightly differently (see Table S4). PCA

of the previous descriptors on our dataset (Figure S8A) produced a

very similar distribution of principal components 1 and 2 to that in

Figure 4. Multiple comparisons of Compactness and Area between ecotypes. Scatter plots showing significant (P.0.05., P,0.05 .,
P,0.01., Post-hoc Tukey test between ecotypes) differences between ecotypes for (A) ‘Compactness’ and (C) ‘Area’ and boxplots for (B)
‘Compactness’ and (D) Area over time. Images have been added to (A) and (B) to show range of ‘Compactness’ and ‘Area’.
doi:10.1371/journal.pone.0096889.g004
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[13]. Although PC1 and PC2 accounted for more of the variation

(82 and 13% for PCs 1 and 2 in our data compared with 78 and

11% respectively in [13]), probably an effect of the smaller number

of variables used in our PCA. As in [13] most of the Correlations

between area related parameters: Rosette area (RA), Rosette

Perimeter (RP), Ellipse Area (EA), Ellipse Perimeter (EP) and Max

Feret’s diameter (RXF), were positive (Table S5, Figure S8B).

Because of the wider range of the parameters due to the greater

time for growth, these parameters appear to be more closely

related than in [13]. Also the smaller number of ecotypes in our

data set compared with the much larger number of lines in [13]

may have resulted in the closer relationships in our data. As before

the relations of the area based parameters with Rosette

compactness (RC) were less well defined. Thus our results are

largely in agreement with [13] but extend the approach to multiple

time points, Also, our study took into account the repeated

measurements and used statistical models to determine significant

differences between ecotypes, time and their interaction, for each

descriptor. We also reported more descriptors and define how

each of was calculated to allow for other readers to repeat the

analysis.

Discussion

Rosette shape and size are attractive traits on which to develop

and evaluate automated approaches for objective machine-assisted

plant phenotyping. The change in shape and size can describe

how the plant (or crop) covers the ground surface, affecting traits

such as photosynthetic potential and canopy closure. The latter

affects a crop’s ability to suppress competition [30] and, in dry

climates, may affect soil water conservation. In Arabidopsis, rosettes

lie approximately flat across the ground so simple 2D photography

can acquire most of the relevant information.

Despite being intrinsically amenable to automated acquisition

and analysis, there are few detailed studies of rosette shape

surveying natural variation amongst a range of accessions as in the

MAGIC plants here. In this study, aimed at developing non-

destructive objective methods to monitor plant growth, we have

used simple computational methods to process, analyse and

compare the rosettes of 19 ecotypes of Arabidopsis. Images were

taken at successive times to capture the patterns of growth,

segmented to separate rosettes from background and features

describing rosette shapes were extracted and analysed. Shape

descriptors were compared to establish whether differences

between ecotypes were significant. An advantage of this approach

Figure 5. Shape descriptor plots of ecotype’s feature profile.
Radar plot of 20 shape features for each ecotype. Plots are average of
12 replicates over five time points. Variable assignment key for star plot
is located at the bottom right corner. Each star plot or segment diagram
represents one row of the input data. Variables (columns) start on the
right and wind counter clockwise around the circle. The size of the
(scaled) column is shown by the distance from the centre to the point
on the star or the radius of the segment representing the variable. The
columns of the data matrix are scaled independently so that the
maximum value in each column is 1 and the minimum is 0. Segment
numbers corresponding to descriptors are defined in Table 1.
doi:10.1371/journal.pone.0096889.g005

Figure 6. Principal Component Analysis. (A) Variable loadings for first and second principal components, 17 DAS and (B) Analysis by ecotype
over first and second principal components, 17 DAS. Significance level is given by the size of the squares, the smaller the square the more
significantly different (P,0.05). (C) Contrast in ‘Area’ between ‘Bur-0’ and ‘Wu-0’ and Contrast in ‘Compactness’ between ‘Ct-1’ and ‘No-0’) and where
both ecotypes have similar Area as demonstrated in plot (A).
doi:10.1371/journal.pone.0096889.g006
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is that the descriptors used are either independent of plant

orientation, or are calculated taking into account the principal axis

of the rosette. The continuous and complex variation in rosette

shape has been reduced to numerical descriptors, which was here

examined for differences using established statistical techniques.

Significant differences for the descriptors have been established

between ecotypes (Figure 6) and two independent presentations

revealed a similar pattern of relationships between the ecotypes

(Figure 5). These two analyses suggested that shape descriptors

were time and ecotype dependent because the time effect was

significant (P,0.05), the ecotype effect was significant (P,0.05)

and the interaction between time and ecotype was also significant

(P,0.05). To confirm which of those ecotypes with apparently

different time courses on initial visual inspection (Figure S2) were

significantly different, post-hoc tests between pairs of ecotypes

were used. Furthermore, the RRAGR interaction plots (Figure 7A)

and the post-hoc tests suggested that descriptors such as ‘Area’ do

not change with the same direction and amount in all ecotypes

(Figure S7). Those changes could not be attributed to seed size as

seed size was not correlated with rosette area.

In addition to the statistical results, PCA and machine learning

analyses (such as the ReliefF method used here) concluded that

‘Area’ and Compactness were among a set of candidates that

could be used for rosette classification. Other studies have also

demonstrated that ‘Area’ accounted for the highest variability

[13]. As most of the shape descriptors used ‘Area’ as parameter,

perhaps other descriptors associated with ‘Area’ could be used for

classification, for example RRAGR (Figure S3E). Note that PCA

plots (Figure 6 and Figure S3A-D) show Area as clustered with a

number of other shape descriptors and not completely isolated

from the rest.

While this paper describes the application of an initial set of

unbiased quantitative characters to describe variation in rosette

shape of Arabidopsis, other shape descriptors are available. Some of

these may be more robust to differences in viewpoint and scale and

some assess other aspects of shape that are not included here [31].

We restricted our study to two dimensions, an obvious over-

simplification. Rosettes are significantly variable in 3-D; capturing

the 3rd dimension requires more sophisticated image vision tools.

Subsequent floral development is highly dynamic in all three

spatial dimensions and requires additional descriptors. Further-

more, physiological processes contribute to colour variation that is

super-imposed on morphological variation. Some techniques (such

as LemnaTec 2.5D) provide a very rough proxy, but most other

currently used methods are in effect multiple 2-D analyses, and the

same pipeline for plant management, image processing and data

analysis could be used. It remains a very significant challenge to

screen populations in 3-D but 3D models have been produced

from rotary imaging [32] or laser scanning [33] of single plants.

Thus, the development of an optimal set of descriptors suitable for

capturing general traits remains to be completed and is partly

dependent on the imaging technology available.

A widespread and probably under-reported problem in plant

biology is that, in spite of very careful control of growth conditions,

it seems remarkably difficult to grow plants in a reproducible

manner between laboratories [34]. As the measurements used in

this report are non-destructive and rapid they provide a

completely unbiased means of measuring growth responses for

given genotypes across different locales, times and environments.

Essentially this would use genetically defined plants as an

environmental monitor with objectively acquired plant morpho-

logical descriptors as the readout, allowing results to be

normalised. This could replace manual, often subjective, observa-

tions and allow improved comparisons between experiments

across workers and laboratories. Also the information contained

in the shape descriptors, together with the existing descriptions of

leaf shape [17,35], should allow reconstruction of a representation

of the average plant with its statistically described range under

given conditions. These reconstructions could then be developed

for plants grown under a range of conditions and will allow a

thorough cataloguing of environmental responses that can be used

to diagnose those features of the environment that the plant is

responding to. In that regard, we compared our results against the

Perez-Perez study and found important similarities.

Both commercial (e.g Matlab, LemnaTec) and freeware (i.e.

ImageJ [36], Octave [37] or Scilab [38]) packages are capable of

extracting and analysing appropriate descriptors are readily

available. However, in some commercial packages, the precise

mathematical identity of the descriptor is obscure and can change

without notification. This reduces their value to the general

Figure 7. Shape descriptors over time. (A) Relative Rosette Area Growth Rate Over Time (RRAGR), (B) Compactness.
doi:10.1371/journal.pone.0096889.g007
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research community. We include a list of equations (Table S1)

defining the majority of descriptors as used in version 2.1.0.8645 of

LemnaTec. These equations were written in the Matlab environ-

ment to provide another way to calculate the shape descriptors.

The definition of variables are in the files (Methods S1 and S2);

variable names used to store final results of calculations in the

Matlab program on a binary image are given in Table S6 to

facilitate comparison of results using other software. It is also

important to convert pixel-based values to appropriate dimensions

to facilitate comparisons of images takes on different cameras with

different optics and different distances. We suggest that all such

descriptors should be clearly described by software purveyors, so

that they can be used in the creation of technology-standard

ontologies.

In general terms, the same principles should be applicable to

more complex plant architectures, including later developmental

stages of Arabidopsis as well as to crops and grasses of economic

importance. The challenge will be to process and characterise

large amounts of 2- and 3-D image and physiological data taken

from automated capture systems handling large numbers of plants.

Therefore, phenotype-genotype relationships for plant improve-

ment can benefit hugely, and descriptions of shape phenotypes will

become as accessible to analyses as currently available for

genotypes. Here we have provided equivalent analysis in open

source software and have provided the equations the calculation

image descriptors which are closer to the ideal for reproducible

computational research [39].

Supporting Information

Figure S1 Illustration of variation in the shapes of
Arabidopsis rosettes and of descriptors (as defined in
Tables 1 and S1, with values given in table S2. Rows in

order from top: Segmented image; Normsmallpax and Normlar-

gepax; Vrectsizex and Vrectsizey; Maxdiam; convex hull from

which Conhullarea and Conhullcirc are derived; Rectangle from

which Minrectarea is determined and (bottom row) the circle from

which Mincirclediam is determined. The rosettes in the image are

artificial, they correspond to one Arabidopsis rosette manually

modified to demonstrate the meaning of the descriptors.

(TIF)

Figure S2 Time courses. Shape and size descriptors and area

growth rate for the 19 Ecotypes. Values are averages per ecotype

at each time point.

(ZIP)

Figure S3 PCA at successive time points. (A) 22 DAS, (B)

25 DAS, (C) 25 DAS and (D) across all-time series.

(ZIP)

Figure S4 Relative contributions of all variables to
principal components 1 to 5 for analysed separately
22, 25 28 and 32 DAS. (For 17 DAS see Figure 6).

(ZIP)

Figure S5 Principal components 1 and 2 from PCA
combined over all ecotypes and times with points
labelled by time.
(TIF)

Figure S6 PCA For each time and grouped by ecotype.
(A) 22 DAS, (B) 25 DAS, (C) 28 DAS and (D) 32 DAS. Small

squares around the ecotypes show significant differences (P,0.05)

between ecotypes. The smaller the square the more significant the

difference.

(ZIP)

Figure S7 Multiple comparison of RRAGR. Scatter plots

showing significant (P.0.05., P,0.05 ., P,0.01., Post-hoc Tukey

test between ecotypes).

(TIF)

Figure S8 Results from analysis of descriptors here also
used in [13]. (A) PCA and (B) Scatter plot showing relations

between seven descriptors.

(TIF)

Table S1 Equivalence of names provided by LemnaTec
software.

(DOCX)

Table S2 Values of features extracted from rosettes
illustrated in Figure S1 used to show variation in rosette
descriptors with id of descriptor as in Table 1.

(DOCX)

Table S3 Comparison of experiments between Perez-
Perez and Camargo studies.

(DOCX)

Table S4 Correspondence of shape descriptors in
Perez-Perez and this study.

(DOCX)

Table S5 Correlation coefficient between each descrip-
tor and principal component one.

(DOCX)

Table S6 Variable names used to store final results of
calculations in the Matlab program on a binary image
stored as bw. Also scale factor (sf) applied to convert units from

pixel based values to measurements (where value is not a ratio then

no entry).

(DOCX)

Methods S1 Description of calculations of shape pa-
rameters.

(DOCX)

Methods S2 Compressed file contains a number of files.
1) Raw data. Descriptors extracted from each segmented image, 2)

R scripts used to handle and analyse data, 3) Matlab scripts used as

another way to extract the 20 shape descriptors used in this

analysis, 4) Example image suitable for processing by the Matlab

script and 5) File descriptions, summary of files in this zip file.

(ZIP)
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