114 research outputs found

    Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: Experiments and simulations

    Get PDF
    We study experimentally the dynamics of vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated (PR) optical feedback, such that the natural lasing polarization of a VCSEL is rotated by 90 deg and then is reinjected into the laser. We observe noisy, square-wave-like polarization switchings with periodicity slightly longer than twice the delay time, which degrade to (or alternate with) bursts of irregular oscillations. We present results of simulations that are in good agreement with the observations. The simulations demonstrate that close to threshold the regular switching is very sensitive to noise, while well above threshold is less affected by the noise strength. The frequency splitting between the two polarizations plays a key role in the switching regularity, and we identify wide parameter regions where deterministic and robust switching can be observed.Postprint (published version

    Synthesis of TiO2-x/W18O49 Hollow Double-shell and Core-shell Microspheres for CO2 Photoreduction under Visible Light

    Get PDF
    TiO2x/W18O49 with core–shell or double-shelled hollow microspheres were synthesized through a facile multi-step solvothermal method. The formation of the hollow microspheres with a doubleshell was a result of the Kirkendall effect during the solvothermal treatment with concentrated NaOH. The advanced architecture significantly enhanced the electronic properties of TiO2x/ W18O49, improving by more than 30 times the CO2 photoreduction efficiency compared to the pristine W18O49. Operando DRIFTS measurements revealed that the yellow TiO2x was a preferable CO2 adsorption and conversion site

    A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra

    Get PDF
    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accurate values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies—by the ΔSCF method—and relative intensities—in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers

    Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators

    Full text link
    Chains of parametrically driven, damped pendula are known to support soliton-like clusters of in-phase motion which become unstable and seed spatiotemporal chaos for sufficiently large driving amplitudes. We show that the pinning of the soliton on a "long" impurity (a longer pendulum) expands dramatically its stability region whereas "short" defects simply repel solitons producing effective partition of the chain. We also show that defects may spontaneously nucleate solitons.Comment: 4 pages in RevTeX; 7 figures in ps forma

    Victim-offender mediation and social work: focus groups with mediators in Flanders

    Get PDF
    The role of social work in the restorative justice field remains largely unexplored. This article reports on the findings of focus groups conducted with mediators of juvenile and adult mediation practices in Flanders (Belgium) to gain more insight into how mediators perceive their professional role and to what extent they refer to individual and structural dimensions of social work practice. Implications for future social work involvement and research are made

    Pathologist Concordance for Ovarian Carcinoma Subtype Classification and Identification of Relevant Histologic Features Using Microscope and Whole Slide Imaging.

    Get PDF
    CONTEXT.—: Despite several studies focusing on the validation of whole slide imaging (WSI) across organ systems or subspecialties, the use of WSI for specific primary diagnosis tasks has been underexamined. OBJECTIVE.—: To assess pathologist performance for the histologic subtyping of individual sections of ovarian carcinomas using a light microscope and WSI. DESIGN.—: A panel of 3 experienced gynecologic pathologists provided reference subtype diagnoses for 212 histologic sections from 109 ovarian carcinomas based on optical microscopy review. Two additional attending pathologists provided diagnoses and also identified the presence of a set of 8 histologic features important for ovarian tumor subtyping. Two experienced gynecologic pathologists and 2 fellows reviewed the corresponding WSI images for subtype classification and feature identification. RESULTS.—: Across pathologists specialized in gynecologic pathology, concordance with the reference diagnosis for the 5 major ovarian carcinoma subtypes was significantly higher for a pathologist reading on a microscope than each of 2 pathologists reading on WSI. Differences were primarily due to more frequent classification of mucinous carcinomas as endometrioid with WSI. Pathologists had generally low agreement in identifying histologic features important to ovarian tumor subtype classification with either an optical microscopy or WSI. This result suggests the need for refined histologic criteria for identifying such features. Interobserver agreement was particularly low for identifying intracytoplasmic mucin with WSI. Inconsistencies in evaluating nuclear atypia and mitoses with WSI were also observed. CONCLUSIONS.—: Further research is needed to specify the reasons for these diagnostic challenges and to inform users and manufacturers of WSI technology

    Functional immune responses against SARS-CoV-2 variants of concern after fourth COVID-19 vaccine dose or infection in patients with blood cancer

    Get PDF
    Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination

    Locking bandwidth of two laterally coupled semiconductor lasers subject to optical injection

    Get PDF
    We report here for the first time (to our knowledge), a new and universal mechanism by which a two-element laser array is locked to external optical injection and admits stably injection-locked states within a nontrivial trapezoidal region. The rate equations for the system are studied both analytically and numerically. We derive a simple mathematical expression for the locking conditions, which reveals that two parallel saddle-node bifurcation branches, not reported for conventional single lasers subject to optical injection, delimit the injection locking range and its width. Important parameters are the linewidth enhancement factor, the laser separation, and the frequency offset between the two laterally-coupled lasers; the influence of these parameters on locking conditions is explored comprehensively. Our analytic approximations are validated numerically by using a path continuation technique as well as direct numerical integration of the rate equations. More importantly, our results are not restricted by waveguiding structures and uncover a generic locking behavior in the lateral arrays in the presence of injection
    • …
    corecore