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Locking bandwidth of two laterally-
coupled semiconductor lasers 
subject to optical injection
Nianqiang Li  1, H. Susanto2, B. R. Cemlyn1, I. D. Henning1 & M. J. Adams1

We report here for the first time (to our knowledge), a new and universal mechanism by which a two-
element laser array is locked to external optical injection and admits stably injection-locked states 
within a nontrivial trapezoidal region. The rate equations for the system are studied both analytically 
and numerically. We derive a simple mathematical expression for the locking conditions, which reveals 
that two parallel saddle-node bifurcation branches, not reported for conventional single lasers subject 
to optical injection, delimit the injection locking range and its width. Important parameters are the 
linewidth enhancement factor, the laser separation, and the frequency offset between the two laterally-
coupled lasers; the influence of these parameters on locking conditions is explored comprehensively. 
Our analytic approximations are validated numerically by using a path continuation technique as well 
as direct numerical integration of the rate equations. More importantly, our results are not restricted by 
waveguiding structures and uncover a generic locking behavior in the lateral arrays in the presence of 
injection.

Coupled nonlinear oscillators/systems have received considerable attention due to their rich dynamics including 
stable continuous wave (cw) operation, oscillatory states and chaos, as well as collective dynamical behavior, 
e.g. synchronization of periodic and even chaotic oscillations; see, e.g.1–3, and references therein. One relatively 
simple example of these systems is the 1-dimensional (1-D) lateral laser array with nearest-neighbor interactions 
(or evanescently-coupled laser array)4. Researchers are interested in this basic array because practically it can be 
readily fabricated on a single chip, and also it can be accurately modelled by a set of ordinary differential equa-
tions, usually called the coupled laser model. This basic set of simple rate equations makes extending the investi-
gation to larger 1-D or even 2-dimensional arrays more tractable and, when coupled with a detailed bifurcation 
analysis, regions of stability and dynamics and their nature can be revealed. In particular, the study of lateral laser 
arrays has been motivated, among other things, from the perspective of engineering applications, for instance, by 
developing designs and implementing appropriate technology to obtain stable high-power operation in a narrow 
beam5,6, as well as enabling significant modulation bandwidth enhancement7,8. Aside from its technological appli-
cations, from the physics viewpoint the investigation of such a configuration has fundamental interest and can 
clarify the complex dynamical behaviour as mentioned above (see9 and references therein). Furthermore, these 
devices turn out to be sources for uncovering novel physical phenomena such as gain tuning and parity-time sym-
metry breaking10, turbulent chimeras11, as well as a periodicity of behavior with laser separation12. Among many 
others, two laterally coupled lasers forming the simplest laser array (hereafter, a two-element laser array) have 
been widely studied both theoretically7,12–18 and experimentally8,10,19–21. In particular, the excellent agreement 
between experimental measurements and coupled-mode theory in laser arrays in10 is expected to stimulate more 
research in this fruitful field.

Stable locking behavior is a generic property in many coupled systems22–26, and lateral laser arrays are no 
exception12,17–19. Previous bifurcation analyses have shown that stable locking regions can be found in two- and 
three-element laser arrays and depend strongly on the degree of amplitude-phase coupling of the lasing field 
that is characterized by the linewidth enhancement factor12,18,27. Regions of the parameter space in which either 
in-phase or out-of-phase cw states exist can be easily determined; however, in laser arrays, more complicated 
dynamical states are dominant12,18,27–29. Interestingly, some feedback configurations, such as feedback on the bias 
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current or an external mirror, can be used to stabilize laser arrays30–33. A commonly adopted approach is locking 
the elements by introducing an external input (i.e. a master laser operating in a cw regime)34,35. An important 
advantage of this approach is that it is a very effective means to improve the performance of semiconductor 
lasers through resonance frequency enhancement36, frequency chirp reduction37 and laser spectral narrow-
ing38. The simplest model for this type of system is a single semiconductor laser (slave) subject to optical injec-
tion from a master laser39. Here the stable locking conditions are well understood: the stable region is bounded 
by a saddle-node (SN) and a Hopf bifurcation line, and outside of this region the system exhibits a wealth of 
dynamical behaviour which can include pulsations, chaos, periodic oscillations and multi-stability34,40. A similar 
injection-locking technique has been applied to broad-area laser arrays41 and other laser arrays consisting of con-
ventional edge-emitting lasers42–45 or vertical-cavity surface-emitting lasers46,47. For example, the control of the 
far-field beam pattern and the spectrum of 10-element laser arrays by injection locking to a single-mode master 
laser has been experimentally demonstrated, and similar results can be achieved when the entire array is illumi-
nated by the master laser beam or when only one of the elements is illuminated42. Moreover, the phase-locked 
solution in two-element arrays can be stabilized at a low external injection-locking power with a suitably chosen 
frequency detuning between the laser array and the master laser48. Despite the large amount of theoretical and 
experimental work35,41–48 the actual mechanisms of how optical injection induces stable injection locking and the 
underlying bifurcation boundaries of the locking range in laser arrays have never been analyzed.

The present work has been prompted by our recent study of waveguide properties on the dynamics of a 
two-element array whose lasers are coupled by means of their overlapping evanescent fields12. The result of that 
report was to reveal a previously overlooked periodicity of behavior with laser separation. It was shown that 
this periodicity has increasing influence on the bifurcations of the system as the structures develop from those 
with purely real guidance to a combination of index antiguiding and gain-guiding. Here we extend the model 
discussed in12 by introducing optical injection into one element of the array and give a detailed and comprehen-
sive analysis of locking conditions in this system. Our purpose is to determine the locking range and to develop 
an analytic approximation for the conditions that define the domain of stable locking. In order to validate the 
approximation, we perform a bifurcation analysis using the standard continuation package AUTO49, comple-
mented by numerical solution of the rate equations. Additionally, we consider the influence of the four waveguide 
systems introduced in12 and some key parameters, including linewidth enhancement factor, laser separation and 
frequency offset (frequency difference between the two waveguide lasers), on the locking range and width.

Results
Formulation. Our basic model is a two-element laser array which consists of two laterally-coupled semi-
conductor lasers, i.e., two identical laser waveguides, A and B, each of width 2a, with an edge-to-edge separation 
of 2d, as illustrated schematically in Fig. 1 in12. As detailed in that paper, we have modelled the laser system by a 
set of ordinary differential equations, which provide a basis for the current study. Here we consider a basic mas-
ter-slave setup in which only laser A (guide A) of the two-element array is subject to external optical injection. 
Following12 with a straightforward modification to account for the optical injection we restrict ourselves to the 
case where a solitary laser supports a single transverse mode and extend the basic coupled-mode equations to 
include an externally injected field kinjEinje−iΔωt, where Δω = ωinj − ω, with ωinj as the injected angular frequency 
and ω as the free-running angular frequency of the total electric field of the system in the absence of injection, Einj 
as the injected field, and kinj as a coupling rate for the injected signal. Such a laser system can be described by the 
following dimensionless rate equations (see Supplementary Equations for a derivation):
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where Ω = ΩB − ΩA is the frequency offset between the cavity resonances of the two coupled lasers in the absence 
of injection, YA, YB are the normalized fields, φA, φB are the corresponding phases, and MA, MB are the normalized 
carrier densities in guides A, B, respectively, τN is the carrier lifetime, τp is the photon lifetime, and αH is the line-
width enhancement factor that accounts for the phase-amplitude coupling in the electric field. ηr, ηi are the real 
and imaginary parts of the complex coupling coefficient η, which is mathematically defined as12

η η=
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where Cη, Cθ can be found from numerical integration and Wr, Wi are the real and imaginary parts of the trans-
verse propagation constant in the regions outside the cores of waveguides A and B. QA, QB are normalized pump-
ing rates for lasers A and B, defined by Eq. (S11) in Supplementary Document. Restricting attention in what 
follows to the case of equal pumping Q ≡ QA = QB, these can be expressed in terms of the ratio of pumping rate to 
its threshold value, P/Pth, as12
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where n is the refractive index. As in our recent work12, the following set of parameter values is considered: a = 4 
μm, adiff = 1 × 10−15 cm2, No = 1 × 1018 cm−3, τN = 1.0 ns, τp = 1.53 ps, n = 3.4 and P/Pth = 2. We assume αH = 2 
unless otherwise specified. These values are typical for laterally-coupled semiconductor lasers. Table 1 gives 
numerical values of the key parameters for the four cases of interest that were analyzed in12. Here Δnr and Δni are 
the real and imaginary parts of the index difference between the core and cladding regions of the waveguides that 
are used in calculating the transverse propagation constant and the coupling coefficient.

The cases shown in table were chosen in12 to illustrate a range of waveguide scenarios for comparative pur-
poses; the first row considers the case of purely real index guiding, the second row refers to positive index guid-
ing where some gain-guiding is also present, the third row is the case of no built-in index guiding (i.e. pure 
gain-guiding) and the last row simulates index antiguiding with gain-guiding.

Numerical simulations. The dependence of the system dynamics on control parameters can be numerically 
investigated by integrating Eqs (1)–(6). To this end, we start our analysis by solving them using a fourth-order 
Runge-Kutta algorithm with a fixed time step of 1 ps. Each time series has been obtained by running the program 
over a time interval of 300 ns. To gain a complete view of the dynamics in the two-element laser array in the 
presence of external optical injection we construct the bifurcation map of dynamical regimes of the system in 
the parameter plane of the injection ratio K and optical frequency detuning Δf(=(Δωinj)/(2π)); see the section of 
asymptotic analysis for the definition of K and Δωinj.

We first consider locking in the single laser case. If η → 0, Eqs (1)–(6) reduce to the well-known equations 
of a single laser with optical injection39. Figure 1 displays the typical stability map of different regions in the (K, 
Δf)-plane, with each region corresponding to a different dynamic behavior. A 400 × 400 grid was used to dis-
cretize a square region of the parameter space. The color coding corresponds to the different dynamic regimes 
identified by a bifurcation analysis, i.e. from the extrema of the laser intensity time series, in which cw, period 
one (P1), period two (P2), and complex dynamics are identified as a constant intensity, two intensity extrema, 
four intensity extrema, and even more extrema, respectively. The regular dynamics including cw, P1, and P2 are 
marked in white, dark blue, and light blue, respectively. Qualitatively, we define complicated dynamics including 
chaos where the number of extrema exceeds four and use gradually changing colors from green to yellow, red, 
and dark red, to represent them. In the white region, the laser is injection-locked to the external light and thus 
operating in a cw state, which is the focus of the current study.

In fact, the (white) stable locking region is bounded by two types of bifurcations: one is an SN bifurcation 
and the other is referred to as a Hopf bifurcation, which is confirmed by using a path continuation technique 
(not shown here). As shown in Fig. 1, we present the locking region for four different representative values of the 
linewidth-enhancement factor αH. In the case of a zero value of αH, the stability map is symmetric about zero 
detuning and the stable locking region is bounded by SN and Hopf curves (one can get insight into them by using 

Δnr gth (cm−1) Δni Wr Wi CQ Cη (ns−1) Cθ (rad)

0.00097 87.7 0 1.26 0 11.4 83.6 0

0.0005 90.6 0.000937 1.09 0.896 11.0 90.2 0.233

0 99.3 0.00103 0.795 1.22 10.1 91.9 0.294

−0.0005 108 0.00112 0.604 1.61 9.26 96.3 0.183

Table 1. Values of key parameters for modelling, using material parameter values given in text.
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the path continuation technique34). In other non-zero αH cases, however, the stability map appears asymmetric 
about zero detuning due to the amplitude-phase coupling in the field, and the stable locking region is shifted to 
large negative detunings for a large linewidth-enhancement factor (a larger scale of the vertical axis is used for 
αH = 3 and 4). The locking region is determined by two SN boundaries for very small injection powers, and by an 
SN and a Hopf curve for moderate and strong injection levels. The evolution of the injection-locked solution and 
dynamics near these boundaries of the stable locking region has been extensively studied34,39,40,50–53. These reports 
can serve as a basis for studying injection locking phenomenon in laser arrays, which exhibit a very different and 
interesting behavior as will be discussed in the following.

Now we turn to study the locking behavior in the optically injected two-element array (η ≠ 0) and take the 
case of purely real index guiding with Δnr = 0.00971 (first row of Table 1) as an example. Figure 2 shows the 
stability map in this system for laser separation ratio d/a = 1.2, where three frequency offset values are con-
sidered: ΔΩ/2π = −6, −9, and −12 GHz. Again, the white area shows the well-defined region for which the 
injection-locked solutions can exist. Interestingly, the whole system (both lasers A and B in the two-element 
array) is locked to the external signal. It is worth noting that in one previous report single-mode spectra and 
narrow far-field lobs were obtained in a 10-element laser diode array injection-locked by a single-mode master 
laser42. However although the authors employed more elements in the laser array, their experimental results could 
be taken as evidence for locking all the elements at the same time.

Several other prominent phenomena can be identified as follows. First, a large variety of dynamics are seen in 
the (K, Δf)-plane for the optically injected two-element array (however, we are only interested in the locking area 
in the current study). Second, the locking range differs notably from that in the case of a single laser subject to 
injection39: we find a nontrivial shape for the locking region and term it ‘trapezoid’. We find there are no qualita-
tive changes in detuning along the axis of increasing injection ratio K (x-axis) after the system enters the locking 
range at a critical injection level (this can be approximately estimated from the SN boundary in the optically 
injected single laser case cf. Figs 1 and 2), and that the locking frequency range is symmetric about the frequency 
offset ΔΩ/2π. Third, the locking range can be tuned by controlling the offset ΔΩ/2π, while the trapezoid shape 
and width of the locking range are almost identical for different offset values, indicating that our results are 
extremely robust and, this control parameter has no obvious impact on the locking bandwidth in the two-element 

Figure 1. Stability map of a single laser with injection in the (K, Δf) plane for four different representative 
values of the linewidth-enhancement factor αH: (a) αH = 0, (b) 2, (c) 3, and (d) 4. H and SN stand for the Hopf 
and saddle-node bifurcations, respectively. The white region denotes stable operation (cw), dark blue represents 
P1, light blue stands for P2, while other colors (from green to yellow, red, and dark red) refer to complex 
dynamics (cx).

Figure 2. Stability map of the two-element array in the presence of injection in the (K, Δf) plane for the case of 
the real index guide with Δnr = 0.000971, where d/a = 1.2 and αH = 2. (a,b) offset ΔΩ/2π = −6, (c,d) −9, and 
(e,f) −12 GHz. The top row denotes Laser A, while the bottom row represents Laser B. The color codes are the 
same as those in Fig. 1.
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array case. In fact, to achieve locking one should be careful with the selection of the offset by choosing a value well 
below the Hopf bifurcation curve found in the case of a single laser subject to injection, otherwise the locking 
range will be interrupted by pulsations (see discussion of the final figure below).

When a positive offset ΔΩ/2π is chosen for finite αH, the optically injected two-element array cannot be 
locked to the external injection signal in the range of injection ratio considered. This is to be expected due to the 
asymmetric property introduced by the linewidth-enhancement factor in optically injected laser systems (see 
Supplementary Fig. S1 for more information).

Asymptotic analysis of locking bandwidth. The conditions for the injection locking can be derived 
from the steady-state solutions of Eqs (1)–(6), which can be obtained by setting the left-hand sides (LHS) of these 
equations equal to zero. We consider the case of equal pumping in the lasers, i.e., QA = QB ≡ Q, and identical 
parameters for them except for taking into account the frequency offset. Based on the asymptotic analysis of the 
steady-state solutions and writing η = |η| exp (iΨ), we find the locking condition satisfies the equation of the form 
(all details are given in Supplementary Document)

ω α η φ θΔ − ΔΩ =− + Ψ + +
Y
Y
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where the subscript ‘s’ denotes steady state, Δωinj = ωinj − ΩA is the frequency detuning between the external 
injection field and the field of laser A, and tanθ = αH.

Neglecting terms of order τpηr, τpηi, and defining K = Kinj/YAs and Δ = 2Kτp/τN < 1, we obtain an analytical 
expression for the ratio of the field amplitude in the two lasers

Y
Y

Q
Q

1
( 1)

,
(11)

As

Bs π
≅ ±

Δ
−

Substituting (11) into (10) and considering the mean values of ±2/π for the cosine, we find an approximation 
for the locking condition given by

ω η α
π

τ

τ
Δ − ΔΩ ≤ +





 ±

−





.K Q

Q
1 1 2

( 1) (12)
inj H

p

N

2

It is worth noting that 1) this approximation corresponds to the branches of SN (also called fold or limit 
point) bifurcations existing in the laterally-coupled lasers subject to optical injection, which can be confirmed by 
carrying out linear stability analysis; 2) the locking range confined by these SN lines only weakly depends on the 
injection ratio K, which confirms the results in Figs 2 and 3) stable locking occurs in the whole range under the 
condition that lasers A and B are only weakly coupled. One example is shown in Fig. 2, where both the lower and 
upper limits are identified as SN bifurcation curves with the aid of our asymptotic analysis, and no unstable state 
is found between them. However, part of the locking range in the (K, Δf)-plane may be dynamically unstable if 
the coupling strength between the lasers A and B is not weak enough. Since we consider only the weak coupling 
case in accordance with the validity of coupled-mode theory, stable cw operation can be guaranteed in the whole 
locking range in the (K, Δf)-plane. For the sake of simplicity, for not too large K, the final term on the right hand 
side (RHS) of (12) is sufficiently small, then a good approximation is

1 (13)inj H
2ω η αΔ − ΔΩ ≤ + .

Figure 3. Bifurcation diagram of the two-element array in the presence of injection in the (K, Δf)-plane, 
where ΔΩ/2π = −6 GHz and αH = 2. (top row) real index guide with Δnr = 0.000971: (left to right) d/a = 1.2, 
d/a = 1.4, and d/a = 1.6; (bottom row) real index antiguide with Δnr = −0.0005 and gain-guiding: (left to right) 
d/a = 2.7, d/a = 3.0, and d/a = 3.5. Solid line: simulation; Broken line: approximation using Eq. (12).
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This result can be compared with the well-known corresponding result for a single laser subject to optical 
injection39:

ω
τ

αΔ ≤ + .
K 1

(14)inj
N

H
2

It is worth noting that, as expected, the negative detuning part of Eq. (14) is clearly seen in the plots of Fig. 1, 
but also that an amended form of this result is seen to form the lower left stability boundary of the plots in Fig. 2. 
For more details of the latter, please see the Supplementary Document.

Returning to Eq. (13) for the coupled laser system, it follows that the approximate bandwidth (BW) of the 
locking region is given by

BW Hz1 ( ) (15)H
2η

π
α≅ + .

Eqs (12), (13) and (15) are the main mathematical results of this paper. It is interesting to find that the locking 
bandwidth can be approximated by such a simple analytical expression, where the control parameters are cou-
pling strength and the linewidth enhancement factor. Additionally, it should note that the locking range given by 
Eqs (12) or (13) is symmetric with respect to the condition Δωinj = ΔΩ, which explains our earlier observation 
about the numerical results in Fig. 2.

In the next section, we illustrate and compare our approximate results with simulations.

Validating the approximation. In order to explore the validity of our asymptotic approximations, we 
have determined numerically the SN-bifurcation points from the equations and followed them using AUTO 
continuation software49. In our previous work, we have shown that the waveguide structures are of crucial impor-
tance to determine the dynamics and phase-locked regions in the stand-alone two-element laser arrays12. We 
have to understand the influence of waveguide structures on the locking phenomenon so as to draw a generic 
conclusion. To this end, we have compared the results for four cases as mentioned above, i.e., (1) real index guide 
with Δnr = 0.000971, (2) real index guide with Δnr = 0.0005 and gain-guiding, (3) guide with Δnr = 0, pure 
gain-guiding, and (4) real index antiguide with Δnr = −0.0005 and gain-guiding. The corresponding parameters 
have been detailed in Table 1. Moreover, the influence of the laser separation ratio d/a has been taken into account 
in this section.

Figure 3 shows the boundaries of the stability region, i.e., the SN bifurcations, given in Eq. (12), depending 
on d/a and for two different waveguide parameters (i.e., real index guide with Δnr = 0.000971 and real index 
antiguide with Δnr = −0.0005 and gain-guiding; see Supplementary Fig. S2 for real index guide with Δnr = 0.0005 
and gain-guiding, as well as guide with Δnr = 0, pure gain-guiding). The numerical results obtained by the path 
continuation method are used to validate the asymptotic results. The broken lines give the approximate results 
and the solid curves give the numerical continuation results. As can be seen from this figure and Supplementary 
Fig. S2, our asymptotic approximation is in good agreement with the numerical results in all cases, which verifies 
the accuracy of our approximate results. Other observed results are summarized as follows. First, the shape of the 
locking region remains almost the same in the four waveguide structures and as the laser separation is changed. 
Second, there always exist two SN braches (SN1 and SN2) that (1) become separated for small laser separation 
and large injection ratio K, (2) are almost superposed for other cases and (3) cross each other twice at two small 
values of K, forming an ellipse (red) which is located at the left hand side of the trapezoid structure. Third, the 
numerical results obtained by the path continuation method show that these two branches belong to the SN bifur-
cations occurring on two different equilibrium solutions, which were assumed to be symmetric and asymmetric 
solutions in48. Even though the difference between supercritical and subcritical parts of SN bifurcations is not 
indicated in this figure, we should note that the outer branch (SN2) which is almost parallel in the horizontal (x) 
axis is always supercritical. This corresponds to the existence of stable stationary states between them. However, 
outside the symmetric branch, no stationary solutions exist and the two-element laser array exhibits pulsations 
and other complicated behaviours via other further bifurcations. One can formulate the linearized problem from 
Eqs (1)–(6), derive the characteristic equation for the growth rate, and finally determine the stability of the steady 
state using Routh-Hurwitz conditions12,52,54,55. However, we have used continuation package AUTO to determine 
the supercritical or subcritical property, and one example will be shown at the end of this section.

It is interesting to note that in our system the stable locking is bounded only by SN curves for these weak cou-
pling levels studied, which is distinctively different from (1) the single laser with injection whose locking region 
is bounded by an SN line and a Hopf bifurcation line34,39, and (2) three-element laser arrays in the absence of 
injection where SN, Hopf, and transcritical bifurcations delimit the locking boundaries27,56,57. This implies that the 
locking behavior presented in the two-element laser array in the presence of injection has a different origin than 
the one encountered in previous systems.

On the other hand, in Fig. 3, one can clearly observe that the width of the locking region bounded by the SN 
branches strongly depends on the laser separation ratio d/a. When this control parameter is increased progres-
sively, the locking region shrinks in size. We will inspect the dependence of the locking bandwidth on d/a in more 
detail later in this section. Additionally, the red ellipse in each subfigure represents the threshold of stability for 
the injection ratio K: the injected two-element laser array is unstable on the left of the ellipse, whereas the whole 
system is locked to the injection on its right. This can be roughly approximated by Eq. (S45) (see Supplementary 
Document; the result for a single laser subject to injection), which, however, is not indicated in Fig. 3.

We further examine the stability properties by direct numerical integration of the dimensionless rate Eqs 
(1)–(6) and obtain the corresponding stability map of various dynamical regimes using the same color coding as 
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Fig. 1. Since identical locking regions are found for lasers A and B, only the results for laser B are shown in Fig. 4. 
Again, only the results for real index guide with Δnr = 0.000971 and real index antiguide with Δnr = −0.0005 
and gain-guiding are displayed here; see Supplementary Fig. S3 for real index guide with Δnr = 0.0005 and 
gain-guiding, as well as guide with Δnr = 0, pure gain-guiding. By comparison with Fig. 3 we notice that the sta-
bility region bounded by the SN bifurcation curves only admits the injection-locked solutions in the two-element 
laser array with injection. Moreover, the trend of the locking width versus d/a is confirmed by the time-dependent 
results.

Next we consider the variation of the locking bandwidth with the laser separation ratio d/a and the linewidth 
enhancement factor αH. Here the bandwidth is defined as the interval of the frequency detuning, where the stable 
locked solutions exist, i.e., the distance between the lower and upper limits for the frequency detuning bounded 
by two supercritical parts of SN bifurcation branches (in the vertical direction on the maps). An approximation of 
the bandwidth is given by Eq. (15). Figure 5 represents the exact and approximate bandwidth calculated at K = 60 
in the four cases of waveguide parameters. The solid lines show the numerical simulations, while broken curves 
represent the analytic results. As can be seen, the analytical bandwidth is always in excellent agreement with the 
numerical simulations. Similar trend in the four waveguiding structures indicates that they have no restriction to 
the locking phenomenon in the two-element laser array in the presence of injection. Furthermore, it is notewor-
thy that the bandwidth weakly depends on the value of the injection ratio K, and in Eq. (15) such dependence is 
neglected. When the bandwidth is calculated at a larger value of K, say 100, the exact bandwidth should be slightly 
larger than the approximate result given by Eq. (15), especially for small values of d/a (cf. Fig. 3). High accuracy, 
however, can be maintained regardless of the values of d/a if the analytic expression, given by Eq. (12), is used for 
the determination of the approximate bandwidth.

In Fig. 5, when the laser separation ratio d/a is increased, the locking bandwidth decreases roughly exponen-
tially and finally drops to zero. There is a general trend of larger locking bandwidth for larger values of the linew-
idth enhancement factor. This is expected because from Eq. (15), one can see that the locking bandwidth is 
proportional to |η| and 1 H

2α+ . Larger d/a means smaller |η|, resulting in smaller bandwidth. When the laser 
separation is too large, the interaction between the two laterally-coupled lasers is negligible and the injected light 
is insufficient to lock the whole system at the same time. This indicates that the corresponding SN bifurcation 
boundaries of stationary solutions disappear. In this case, the system reduces to a situation very similar to that in 
a single laser subject to optical injection34,39; see Fig. 1 for the corresponding locking range.

Finally, we emphasize that part of the locking range may be dynamically unstable for small laser separation 
ratio d/a and hence higher evanescent coupling. A typical example is shown in Fig. 6(a), where a real index guide 
with Δnr = 0.000971, offset ΔΩ/2π = −9 GHz and αH = 2 is considered. One can see that part of the injection 
locking range is indeed interrupted by self-pulsation oscillations due to supercritical Hopf bifurcations (H1 and 
H2) [see Fig. 6(a)]. In the bifurcation diagram of Fig. 6(b), the solid and broken curves represent the supercritical 
and subcritical cases, respectively. The change in stability of the Hopf bifurcations is found at codimension-2 
bifurcation points, i.e., generalized Hopf (GH) bifurcation on H1and H3 branches and zero-Hopf (ZH) bifurca-
tion on H2 branch. In particular, at a GH point, the supercritical Hopf bifurcation becomes subcritical; at a ZH 
point, SN and Hopf curves are tangent and they change from supercritical to subcritical34. These are clearly indi-
cated in this diagram. To further test this, we present another example for larger offset ΔΩ/2π = −30 GHz and 
αH = 3 in Fig. 6(c). It is worth noting the trend of needing high injection ratio to achieve locking with increasing 
frequency offset. However a qualitative comparison with the bifurcation diagram in Fig. 6(d) shows a similar 
more complex division of the stable locking region. This is a general phenomenon concerning the behavior with 
high evanescent coupling, regardless of the values of the offset and αH. This is in contrast with weak evanescent 
coupling where a change of stability only occurs through an SN bifurcation, given by Eq. (12). Moreover, the 
mathematical investigation of all Hopf branches in the two-element laser array in the presence of injection is 

Figure 4. Bifurcation diagram of the two-element array in the presence of injection in the (K, Δf)-plane, where 
ΔΩ/2π = −6 GHz and αH = 2. Parameters are the same as those in Fig. 3. The results are presented only for 
Laser B. The color codes are the same as those in Fig. 1.
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much more complicated compared to that in a single laser with injection, but deserves a detailed comparison with 
simulations (see, for example54) and this will be addressed in future work.

Discussion
In the present work we have studied a model for an optically injected two-element laser array where two lasers are 
laterally coupled and one of them is subject to optical injection. In particular, the locking range and bandwidth 
have been investigated analytically and numerically. Approximate analytical results, using the derived asymptotic 
expression, of the parameter range where injection locking is expected to occur in the plane of the injection 
ratio against the frequency detuning agree very well with the numerical results. Our analysis has shown that the 
behavior of the injection-locked array solution is different from that for injection-locking of single lasers39 and 
from that found in three laterally-coupled lasers in the absence of injection27. The locked state occurs in a stable 
locking region bounded by two supercritical, almost parallel, SN lines. The locking bandwidth largely depends 
on the linewidth enhancement factor αH and the laser separation ratio d/a: larger αH and smaller d/a lead to 
larger locking bandwidth. Moreover, the locking range can be tuned readily by controlling the frequency off-
set between the two laterally-coupled lasers. Our results are presented for four different waveguiding structures 
including purely real index guiding, pure gain-guiding, and combinations of index guiding and antiguiding with 
gain-guiding which differ in their behaviour in terms of the variation of coupling amplitude and phase with 
device separation12. Even though it has been demonstrated that these structures have a significant influence on 
the dynamics of two laterally-coupled lasers12, similar injection-locking behaviours are seen when optical injec-
tion is applied to one laser of this model. Since we show for a pair of weakly coupled devices that injection into 
just one can influence the behaviour of the other, it is interesting to postulate how this might be extended to arrays 
with multiply coupled devices. Examples of this already exist where the tendency has been on use of injection for 
controlling the spatial field profiles of the whole VCSEL array46,47 where devices are strongly coupled. In contrast 
our concentration is on weak coupling where any influence may extend to only part of an array; hence the nature 
of this provides an aspect of interest for future work.

Methods
In this contribution, we have employed combined methods to study the locking conditions and bandwidth of two 
laterally-coupled semiconductor lasers in the presence of external optical injection. Here we briefly summarize 
these methods.

Figure 5. Locking bandwidth as a function of d/a four different representative values of the linewidth-
enhancement factor αH. (a) Δnr = 0.000971, (b) 0.0005, (c) 0.0, and (d) −0.0005; Solid line: simulation; Broken 
line: approximation using Eq. (15).

Figure 6. Stability map and bifurcation diagram of the two-element array in the presence of injection in the 
(K, Δf)-plane for the case of the real index guide with Δnr = 0.000971. The stability map is obtained from the 
intensity time traces of Laser B. (a,b) αH = 2, d/a = 1.0, and ΔΩ/2π = −9 GHz; (c,d) αH = 3, d/a = 1.2, and 
ΔΩ/2π = −30 GHz. In (b) and (d), blue stands for SN1, red for SN2, and green for Hopf bifurcations; solid 
line denotes supercritical, while broken line represents subcritical. In (b), the branches of Hopf bifurcations 
H1 and H2 are supercritical, while H3 is subcritical. Codimension-2 bifurcation points including generalized 
Hopf (GH) and zero-Hopf (ZH) are indicated; in (d), the codimension-1 bifurcation curves and codimension-2 
bifurcation points have the same definitions as those in (b), so they are not indicated for simplicity.
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Direct numerical simulations. The rate Eqs (1)–(6) have been integrated by using a fourth-order 
Runge-Kutta algorithm. Specifically, each time series has been obtained by running the program with a fixed 
time step of 1 ps over a time interval of 300 ns. We have carried out a comprehensive bifurcation analysis and 
constructed high-resolution two-dimensional maps to show phased-locked regions and other dynamical regions.

Numerical path continuation. The dynamics of the proposed system has been explored using AUTO soft-
ware (standard numerical path continuation package). This allows tracking of the stable or unstable steady-state 
and periodic solutions and detection of various bifurcations. In particular, we focus on the principal saddle-node 
and Hopf bifurcations. A saddle-node bifurcation is associated with the appearance of one zero eigenvalue, which 
indicates a collision and disappearance of two equilibria in dynamical systems; a Hopf bifurcation corresponds 
to the presence of a pair of purely imaginary eigenvalues, which indicates the birth of a limit cycle from an 
equilibrium in dynamical systems. Both of them can be subcritical or supercritical and reveal insights into the 
boundaries of locking regions58.

Asymptotic analysis. We have derived the conditions for injection locking from the steady-state solutions 
of Eqs (1)–(6). We have obtained a simple mathematical expression that accounts for a nontrivial trapezoidal 
region, where the two-element laser array subject to optical injection admits stably injection-locked states. The 
details are presented in the Supplementary Document. The validity of these asymptotic approximations has been 
confirmed using direct numerical simulations and numerical path continuation methods.
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