1,004 research outputs found

    Boundary and Coulomb Effects on Boson Systems in High-Energy Heavy-Ion Collisions

    Full text link
    The boundary of a boson system plays an important role in determining the momentum distribution of the bosons. For a boson system with a cylindrical boundary, the momentum distribution is enhanced at high transverse momenta but suppressed at low transverse momenta, relative to a Bose-Einstein distribution. The boundary effects on systems of massless gluons and massive pions are studied. For gluons in a quark-gluon plasma, the presence of the boundary may modify the signals for the quark-gluon plasma. For pions in a pion system in heavy-ion collisions, Coulomb final-state interactions with the nuclear participants in the vicinity of the central rapidity region further modify the momentum distribution at low transverse momenta. By including both the boundary effect and the Coulomb final-state interactions we are able to account for the behavior of the π\pi^{-} transverse momentum spectrum observed in many heavy-ion experiments, notably at low transverse momenta.Comment: 15 pages Postscript uuencoded tar-comprssed file, 9 Postscript figures uuencoded tar-compressed fil

    Advanced power sources for space missions

    Get PDF
    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Hadron and hadron-cluster production in a hydrodynamical model including particle evaporation

    Get PDF
    We discuss the evolution of the mixed phase at RHIC and SPS within boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we also consider evaporation of particles off the surface of the fluid. The back-reaction of the evaporation process on the dynamics of the fluid shortens the lifetime of the mixed phase. In our model this lifetime of the mixed phase is <12 fm/c in Au+Au at RHIC and <6.5 fm/c in Pb+Pb at SPS, even in the limit of vanishing transverse expansion velocity. Strangeness separation occurs, especially in events (or at rapidities) with relatively high initial net baryon and strangeness number, enhancing the multiplicity of MEMOs (multiply strange nuclear clusters). If antiquarks and antibaryons reach saturation in the course of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons to deuterons may exceed 0.3 and even anti-helium to helium>0.1. Due to fluctuations, at RHIC even negative baryon number at midrapidity is possible in individual events, so that the antibaryon and antibaryon-cluster yields exceed those of the corresponding baryons and clusters.Comment: 17 pages, Latex, epsfig stylefil

    Out of equilibrium O (N) linear-sigma system - Construction of perturbation theory with gap- and Boltzmann-equations

    Full text link
    We establish from first principles a perturbative framework that allows us to compute reaction rates for processes taking place in nonequilibrium O(N)O (N) linear-sigma systems in broken phase. The system of our concern is quasiuniform system near equilibrium or nonequilibrium quasistationary system. We employ the closed-time-path formalism and use the so-called gradient approximation. No further approximation is introduced. In the course of construction of the framework, we obtain the gap equation that determines the effective masses of π\pi and of σ\sigma, and the generalized Boltzmann equation that describes the evolution of the number-density functions of π\pi and of σ\sigma.Comment: 18 page

    Glyburide Is Anti-inflammatory and Associated with Reduced Mortality in Melioidosis

    Get PDF
    Patients with diabetes have better survival from septic melioidosis than patients who without diabetes. This difference was seen only in patients taking glyburide prior to presentation and was associated with an anti-inflammatory effect of glyburide

    Energy loss of fast quarks in nuclei

    Get PDF
    We report an analysis of the nuclear dependence of the yield of Drell-Yan dimuons from the 800 GeV/c proton bombardment of 2H^2H, C, Ca, Fe, and W targets. Employing a new formulation of the Drell-Yan process in the rest frame of the nucleus, this analysis examines the effect of initial-state energy loss and shadowing on the nuclear-dependence ratios versus the incident proton's momentum fraction and dimuon effective mass. The resulting energy loss per unit path length is dE/dz=2.32±0.52±0.5-dE/dz = 2.32 \pm 0.52\pm 0.5 GeV/fm. This is the first observation of a nonzero energy loss of partons traveling in nuclear environment.Comment: 5 pages, including 4 figure

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFκB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease
    corecore