205 research outputs found

    Challenges in dengue research: A computational perspective

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.The dengue virus is now the most widespread arbovirus affecting human populations, causing significant economic and social impact in South America and South-East Asia. Increasing urbanization and globalization, coupled with insufficient resources for control, misguided policies or lack of political will, and expansion of its mosquito vectors are some of the reasons why interventions have so far failed to curb this major public health problem. Computational approaches have elucidated on dengue's population dynamics with the aim to provide not only a better understanding of the evolution and epidemiology of the virus but also robust intervention strategies. It is clear, however, that these have been insufficient to address key aspects of dengue's biology, many of which will play a crucial role for the success of future control programmes, including vaccination. Within a multiscale perspective on this biological system, with the aim of linking evolutionary, ecological and epidemiological thinking, as well as to expand on classic modelling assumptions, we here propose, discuss and exemplify a few major computational avenues—real-time computational analysis of genetic data, phylodynamic modelling frameworks, within-host model frameworks and GPU-accelerated computing. We argue that these emerging approaches should offer valuable research opportunities over the coming years, as previously applied and demonstrated in the context of other pathogens.JL, AW and SG received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 268904 - DIVERSITY. MR was supported by a Royal Society University Research Fellowship. NRF by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant number 204311/Z/16/Z). WT has received funding from a doctoral scholarship from the Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Partnership

    COVID-19 impact on EuroTravNet infectious diseases sentinel surveillance in Europe

    Get PDF
    BACKGROUND The COVID-19 pandemic resulted in a sharp decline of post-travel patient encounters at the European sentinel surveillance network (EuroTravNet) of travellers' health. We report on the impact of COVID-19 on travel-related infectious diseases as recorded by EuroTravNet clinics. METHODS Travelers who presented between January 1, 2019 and September 30, 2021 were included. Comparisons were made between the pre-pandemic period (14 months from January 1, 2019 to February 29, 2020); and the pandemic period (19 months from March 1, 2020 to September 30, 2021). RESULTS Of the 15,124 visits to the network during the 33-month observation period, 10,941 (72%) were during the pre-pandemic period, and 4183 (28%) during the pandemic period. Average monthly visits declined from 782/month (pre-COVID-19 era) to 220/month (COVID-19 pandemic era). Among non-migrants, the top-10 countries of exposure changed after onset of the COVID-19 pandemic; destinations such as Italy and Austria, where COVID-19 exposure peaked in the first months, replaced typical travel destinations in Asia (Thailand, Indonesia, India). There was a small decline in migrant patients reported, with little change in the top countries of exposure (Bolivia, Mali). The three top diagnoses with the largest overall decreases in relative frequency were acute gastroenteritis (-5.3%), rabies post-exposure prophylaxis (-2.8%), and dengue (-2.6%). Apart from COVID-19 (which rose from 0.1% to 12.7%), the three top diagnoses with the largest overall relative frequency increase were schistosomiasis (+4.9%), strongyloidiasis (+2.7%), and latent tuberculosis (+2.4%). CONCLUSIONS A marked COVID-19 pandemic-induced decline in global travel activities is reflected in reduced travel-related infectious diseases sentinel surveillance reporting

    The Cinderella syndrome:why do malaria-infected cells burst at midnight?

    Get PDF
    An interesting quirk of many malaria infections is that all parasites within a host-millions of them-progress through their cell cycle synchronously. This surprising coordination has long been recognized, yet there is little understanding of what controls it or why it has evolved. Interestingly, the conventional explanation for coordinated development in other parasite species does not seem to apply here. We argue that for malaria parasites, a critical question has yet to be answered: is the coordination due to parasites bursting at the same time or at a particular time? We explicitly delineate these fundamentally different scenarios, possible underlying mechanistic explanations and evolutionary drivers, and discuss the existing corroborating data and key evidence needed to solve this evolutionary mystery. © 2012 Elsevier Ltd

    Risk Factors for Severe Cases of 2009 Influenza A (H1N1): A Case Control Study in Zhejiang Province, China

    Get PDF
    Few case control studies were conducted to explore risk factors for severe cases of 2009 influenza A (H1N1) with the mild cases as controls. Mild and severe cases of 2009 influenza A (H1N1), 230 cases each, were randomly selected from nine cities in Zhejiang Province, China, and unmatched case control study was conducted. This study found that it averagely took 5 days for the severe cases of 2009 influenza A (H1N1) to start antiviral therapy away from onset, 2 days later than mild cases. Having chronic underlying diseases and bad psychological health combined with chronic underlying diseases were two important risk factors for severe cases, and their OR values were 2.39 and 5.85 respectively. Timely anti-viral therapy was a protective factor for severe cases (OR = 0.35, 95% CI: [0.18–0.67]). In conclusion, psychological health education and intervention, as well as timely anti-viral therapy, could not be ignored in the prevention, control and treatment of 2009 influenza A (H1N1)

    Gravitational Lensing

    Full text link
    Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarises the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarised.Comment: Invited review article to appear in Classical and Quantum Gravity, 85 pages, 15 figure

    Duffy Negative Antigen Is No Longer a Barrier to Plasmodium vivax – Molecular Evidences from the African West Coast (Angola and Equatorial Guinea)

    Get PDF
    Recent reports of Plasmodium vivax infections, the most widely distributed species of human malaria, show that this parasite is evolving and adapting, becoming not only more aggressive but also more frequent in countries where it was not present in the past, becoming, therefore, a major source of concern. Thus, it is extremely important to perform new studies of its distribution in West and Central Africa, where there are few reports of its presence, due to the high prevalence of Duffy-negative individuals. The aim of this study was to investigate the presence of P. vivax in Angola and in Equatorial Guinea, using blood samples and mosquitoes. The results showed that P. vivax seems to be able to invade erythrocytes using receptors other than Duffy, and this new capacity is not exclusive to one strain of P. vivax, since we have found samples infected with two different strains: VK247 and classic. Additionally we demonstrated that the parasite has a greater distribution than previously thought, calling for a reevaluation of its worldwide distribution
    corecore