10,209 research outputs found

    High-order optical nonlinearity at low light levels

    Full text link
    We observe a nonlinear optical process in a gas of cold atoms that simultaneously displays the largest reported fifth-order nonlinear susceptibility \chi^(5) = 1.9x10^{-12} (m/V)^4 and high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and gives rise to efficient Bragg scattering in the form of six-wave-mixing at low-light-levels. For large atom-photon coupling strengths, the back-action of the scattered fields influences the light-matter dynamics. This system may have important applications in many-body physics, quantum information processing, and multidimensional soliton formation.Comment: 5 pages, 3 figure

    Total integrated dose testing of solid-state scientific CD4011, CD4013, and CD4060 devices by irradiation with CO-60 gamma rays

    Get PDF
    The total integrated dose response of three CMOS devices manufactured by Solid State Scientific has been measured using CO-60 gamma rays. Key parameter measurements were made and compared for each device type. The data show that the CD4011, CD4013, and CD4060 produced by this manufacturers should not be used in any environments where radiation levels might exceed 1,000 rad(Si)

    Persistent organic pollutant burden, experimental POP exposure and tissue properties affect metabolic profiles of blubber from grey seal pups

    Get PDF
    Persistent organic pollutants (POPs) are toxic, ubiquitous, resist breakdown, bioaccumulate in living tissue and biomagnify in food webs. POPs can also alter energy balance in humans and wildlife. Marine mammals experience high POP concentrations, but consequences for their tissue metabolic characteristics are unknown. We used blubber explants from wild, grey seal (Halichoerus grypus) pups to examine impacts of intrinsic tissue POP burden and acute experimental POP exposure on adipose metabolic characteristics. Glucose use, lactate production and lipolytic rate differed between matched inner and outer blubber explants from the same individuals and between feeding and natural fasting. Glucose use decreased with blubber dioxin-like PCBs (DL-PCB) and increased with acute experimental POP exposure. Lactate production increased with DL-PCBs during feeding, but decreased with DL-PCBs during fasting. Lipolytic rate increased with blubber dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDX) in fasting animals, but declined with DDX when animals were feeding. Our data show that POP burdens are high enough in seal pups to alter adipose function early in life, when fat deposition and mobilisation are vital. Such POP-induced alterations to adipose glucose use may significantly alter energy balance regulation in marine top predators with the potential for long term impacts on fitness and survival

    Evidence for spin liquid ground state in SrDy2_2O4_4 frustrated magnet probed by muSR

    Full text link
    Muon spin relaxation (μ\muSR) measurements were carried out on SrDy2_2O4_4, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from T=300T=300 K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at T=20T=20 mK indicates that SrDy2_2O4_4 features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of μ0H=2\mu_0H=2 T, a non-relaxing asymmetry contribution appears below T=6T=6 K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in Journal of Physics: Conference Series (JPCS

    Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances

    Full text link
    We use an optically dense, anisotropic magneto-optical trap to study recoil-induced resonances (RIRs) in the transient, high-gain regime. We find that two distinct mechanisms govern the atomic dynamics: the finite, frequency-dependent atomic response time, and momentum-space population redistribution. At low input probe intensities, the residual Doppler width of the atoms, combined with the finite atomic response time, result in a linear, transient hysteretic effect that modifies the locations, widths, and magnitudes of the resulting gain spectra depending on the sign of the scan chirp. When larger intensities (\textit{i.e.}, greater than a few μ\muW/cm2^2) are incident on the atomic sample for several μ\mus, hole-burning in the atomic sample's momentum distribution leads to a coherent population redistribution that persists for approximately 100 μ\mus. We propose using RIRs to engineer the atomic momentum distribution to enhance the nonlinear atom-photon coupling. We present a numerical model, and compare the calculated and experimental results to verify our interpretation.Comment: 7 pages, 6 figure

    Rheology of Granular Rafts

    Full text link
    Rheology of macroscopic particle-laden interfaces, called "Granular Rafts" has been experimentally studied, in the simple shear configuration. The shear-stress relation obtained from a classical rheometer exhibits the same behavior as a Bingham fluid and the viscosity diverges with the surface fraction according to evolutions similar to 2D suspensions. The velocity field of the particles that constitute the granular raft has been measured in the stationary state. These measurements reveal non-local rheology similar to dry granular materials. Close to the walls of the rheometer cell, one can observe regions of large local shear rate while in the middle of the cell a quasistatic zone exists. This flowing region, characteristic of granular matter, is described in the framework of an extended kinetic theory showing the evolution of the velocity profile with the imposed shear stress. Measuring the probability density functions of the elementary strains, we provide evidence of a balance between positive and negative elementary strains. This behavior is the signature of a quasistatic region inside the granular raft.Comment: 5 pages, 4 figure
    • …
    corecore