186 research outputs found
Discovery of mating in the major African livestock pathogen Trypanosoma congolense
The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
c-REDUCE: Incorporating sequence conservation to detect motifs that correlate with expression
<p>Abstract</p> <p>Background</p> <p>Computational methods for characterizing novel transcription factor binding sites search for sequence patterns or "motifs" that appear repeatedly in genomic regions of interest. Correlation-based motif finding strategies are used to identify motifs that correlate with expression data and do not rely on promoter sequences from a pre-determined set of genes.</p> <p>Results</p> <p>In this work, we describe a method for predicting motifs that combines the correlation-based strategy with phylogenetic footprinting, where motifs are identified by evaluating orthologous sequence regions from multiple species. Our method, c-REDUCE, can account for variability at a motif position inferred from evolutionary information. c-REDUCE has been tested on ChIP-chip data for yeast transcription factors and on gene expression data in <it>Drosophila</it>.</p> <p>Conclusion</p> <p>Our results indicate that utilizing sequence conservation information in addition to correlation-based methods improves the identification of known motifs.</p
A Review of Chemosensation and Related Behavior in Aquatic Insects
Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment
The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer
<p>Abstract</p> <p>Background</p> <p>Chagas disease has a diverse pathology caused by the parasite <it>Trypanosoma cruzi</it>, and is indigenous to Central and South America. A pronounced feature of the trypanosomes is the kinetoplast, which is comprised of catenated maxicircles and minicircles that provide the transcripts involved in uridine insertion/deletion RNA editing. <it>T. cruzi </it>exchange genetic material through a hybridization event. Extant strains are grouped into six discrete typing units by nuclear markers, and three clades, A, B, and C, based on maxicircle gene analysis. Clades A and B are the more closely related. Representative clade B and C maxicircles are known in their entirety, and portions of A, B, and C clades from multiple strains show intra-strain heterogeneity with the potential for maxicircle taxonomic markers that may correlate with clinical presentation.</p> <p>Results</p> <p>To perform a genome-wide analysis of the three maxicircle clades, the coding region of clade A representative strain Sylvio X10 (a.k.a. Silvio X10) was sequenced by PCR amplification of specific fragments followed by assembly and comparison with the known CL Brener and Esmeraldo maxicircle sequences. The clade A rRNA and protein coding region maintained synteny with clades B and C. Amino acid analysis of non-edited and 5'-edited genes for Sylvio X10 showed the anticipated gene sequences, with notable frameshifts in the non-edited regions of Cyb and ND4. Comparisons of genes that undergo extensive uridine insertion and deletion display a high number of insertion/deletion mutations that are likely permissible due to the post-transcriptional activity of RNA editing.</p> <p>Conclusion</p> <p>Phylogenetic analysis of the entire maxicircle coding region supports the closer evolutionary relationship of clade B to A, consistent with uniparental mitochondrial inheritance from a discrete typing unit TcI parental strain and studies on smaller fragments of the mitochondrial genome. Gene variance that can be corrected by RNA editing hints at an unusual depth for maxicircle taxonomic markers, which will aid in the ability to distinguish strains, their corresponding symptoms, and further our understanding of the <it>T. cruzi </it>population structure. The prevalence of apparently compromised coding regions outside of normally edited regions hints at undescribed but active mechanisms of genetic exchange.</p
Analysis of Two Novel Midgut-Specific Promoters Driving Transgene Expression in Anopheles stephensi Mosquitoes
Background: Tissue-specific promoters controlling the expression of transgenes in Anopheles mosquitoes represent a valuable tool both for studying the interaction between these malaria vectors and the Plasmodium parasites they transmit and for novel malaria control strategies based on developing Plasmodium-refractory mosquitoes by expressing anti-parasitic genes. With this aim we have studied the promoter regions of two genes from the most important malaria vector, Anopheles gambiae, whose expression is strongly induced upon blood feeding. Results: We analysed the A. gambiae Antryp1 and G12 genes, which we have shown to be midgut-specific and maximally expressed at 24 hours post-bloodmeal (PBM). Antryp1, required for bloodmeal digestion, encodes one member of a family of 7 trypsin genes. The G12 gene, of unknown function, was previously identified in our laboratory in a screen for genes induced in response to a bloodmeal. We fused 1.1 kb of the upstream regions containing the putative promoter of these genes to reporter genes and transformed these into the Indian malaria vector A. stephensi to see if we could recapitulate the expression pattern of the endogenous genes. Both the Antryp1 and G12 upstream regions were able to drive femalepredominant, midgut-specific expression in transgenic mosquitoes. Expression of the Antryp1-driven reporter in transgenic A. stephensi lines was low, undetectable by northern blot analysis, and failed to fully match the induction kinetics of the endogenous Antryp1 gene in A. gambiae. This incomplete conservation of expression suggests either subtle differences i
Visualisation of Leishmania donovani Fluorescent Hybrids during Early Stage Development in the Sand Fly Vector
hybrids were produced by co-infecting sand flies with two strains carrying different drug resistance markers. However, the location and timing of hybridisation events in sand flies has not been described. strains carrying hygromycin or neomycin resistance genes and red or green fluorescent markers. Fed females were dissected at different times post bloodmeal (PBM) and examined by fluorescent microscopy or fluorescent activated cell sorting (FACS) followed by confocal microscopy. In mixed infections strains LEM3804 and Gebre-1 reached the cardia and stomodeal valves more rapidly than strains LEM4265 and LV9. Hybrids unequivocally expressing both red and green fluorescence were seen in single flies of both vectors tested, co-infected with LEM4265 and Gebre-1. The hybrids were present as short (procyclic) promastigotes 2 days PBM in the semi-digested blood in the endoperitrophic space. Recovery of a clearly co-expressing hybrid was also achieved by FACS. However, hybrids could not sustain growth in vitro. has profound epidemiological significance, because it facilitates the emergence and spread of new phenotypic traits
Gelechiidae Moths Are Capable of Chemically Dissolving the Pollen of Their Host Plants: First Documented Sporopollenin Breakdown by an Animal
Background: Many insects feed on pollen surface lipids and contents accessible through the germination pores. Pollen walls, however, are not broken down because they consist of sporopollenin and are highly resistant to physical and enzymatic damage. Here we report that certain Microlepidoptera chemically dissolve pollen grains with exudates from their mouthparts. Methodology/Principal Findings: Field observations and experiments in tropical China revealed that two species of Deltophora (Gelechioidea) are the exclusive pollinators of two species of Phyllanthus (Phyllanthaceae) on which their larvae develop and from which the adults take pollen and nectar. DNA sequences placed the moths and plants phylogenetically and confirmed that larvae were those of the pollinating moths; molecular clock dating suggests that the moth clade is younger than the plant clade. Captive moths with pollen on their mouthparts after 2-3 days of starvation no longer carried intact grains, and SEM photographs showed exine fragments on their proboscises. GC-MS revealed cis-b-ocimene as the dominant volatile in leaves and flowers, but GC-MS analyses of proboscis extracts failed to reveal an obvious sporopollenindissolving compound. A candidate is ethanolamine, which occurs in insect hemolymphs and is used to dissolve sporopollenin by palynologists. Conclusions/Significance: This is the first report of any insect and indeed any animal chemically dissolving pollen
Alterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses
West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses
Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis.
BACKGROUND: Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. METHODS: We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. FINDINGS: In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04-1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08-1·29), 1·10 (1·00-1·22), and 1·05 (0·92-1·20), respectively, per 1 SD increment in plasma urate. INTERPRETATION: Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions. FUNDING: UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council
- …