45 research outputs found

    Screening and Characterization of Ternary Oxides for High-Temperature Carbon Capture

    Get PDF
    Carbon capture and storage (CCS) is increasingly being accepted as a necessary component of any effort to mitigate the impact of anthropogenic climate change, as it is both a relatively mature and easily implemented technology. High-temperature CO2 absorption looping is a promising process that offers a much lower energy penalty than the current state of the art amine scrubbing techniques, but more effective materials are required for widespread implementation. This work describes the experimental characterisation and CO2 absorption properties of several new ternary transition metal oxides predicted by high-throughput DFT screening. One material reported here, Li5SbO5, displays reversible CO2 sorption, and maintains 72 % of its theoretical capacity out to 25 cycles. The results in this work are used to discuss major influences on CO2 absorption capacity and rate, including the role of the crystal structure, the transition metal, the alkali or alkaline earth metal, and the competing roles of thermodynamics and kinetics. Notably, this work shows the extent and rate to which ternary metal oxides carbonate is driven primarily by the identity of the alkali or alkaline earth ion and the nature of the crystal structure, whereas the identity of the transition ion carries little influence in the systems studied here

    Low-dimensional quantum magnetism in Cu(NCS)2: A molecular framework material

    Get PDF
    Low-dimensional magnetic materials with spin-12\frac{1}{2} moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure and magnetic properties of copper(II) thiocyanate, Cu(NCS)2_2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, 13^{13}C magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopy, and density functional theory (DFT) investigations indicate that Cu(NCS)2_2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains (J2=133(1)J_2 = 133(1) K, α=J1/J2=0.08\alpha = J_1/J_2 = 0.08). Powder neutron-diffraction measurements confirm that Cu(NCS)2_2 orders as a commensurate antiferromagnet below TN=12T_\mathrm{N} = 12 K, with a strongly reduced ordered moment (0.3 μB\mu_\mathrm{B}) due to quantum fluctuations

    Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework

    Get PDF
    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12_{12}O8_{8}(OH)14_{14}), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.M.J.C. was supported by Sidney Sussex College, Cambridge; M.J.C., J.A.H., and A.L.G. were supported by the European Research Council (279705); and J.L., A.C.F., E.C.-M., and C.P.G. were supported by the Engineering and Physical Sciences Research Council (U.K.) under the Supergen Consortium and Grant (EP/N001583/1). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. The Diamond Light Source Ltd. (beamlines I11 (EE9940, EE15118), I12 (EE12554), and I15 (EE13681, EE13843) is thanked for providing beamtime. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). Part of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council

    A highly reactive precursor in the iron sulfide system

    Get PDF
    Iron sulfur (Fe–S) phases have been implicated in the emergence of life on early Earth due to their catalytic role in the synthesis of prebiotic molecules. Similarly, Fe–S phases are currently of high interest in the development of green catalysts and energy storage. Here we report the synthesis and structure of a nanoparticulate phase (FeSnano) that is a necessary solid-phase precursor to the conventionally assumed initial precipitate in the iron sulfide system, mackinawite. The structure of FeSnano contains tetrahedral iron, which is compensated by monosulfide and polysulfide sulfur species. These together dramatically affect the stability and enhance the reactivity of FeSnano

    Mechanical properties of the ferroelectric metal-free perovskite [MDABCO](NH4)I3

    No full text
    The metal-free hybrid organic-inorganic perovskite [MDABCO](NH4)I3 (with MDABCO = N-methyl-1,4-diazabicyclo[2.2.2]octane) was recently discovered to exhibit an excellent ferroelectric performance, challenging established ceramic ferroelectrics. We here probe the mechanical properties of [MDABCO](NH4)I3 by combining high pressure single crystal X-ray diffraction and nanoindentation, underlining the exceptional role and opportunities that come with the use of sustainable, metal-free perovskite ferroelectrics
    corecore