188 research outputs found
Rapid Assay Diagnostic for Acute Stroke Recognition (RADAR): study protocol for a diagnostic accuracy study
\ua9 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY. Published by BMJ.INTRODUCTION: Large-vessel occlusion (LVO) stroke is effectively treated by time-critical thrombectomy, a highly specialised procedure only available in a limited number of centres. Many patients with suspected stroke are admitted to their nearest hospital and require transfer to access treatment, with resulting delays. This study is evaluating the accuracy of a new rapid portable test for LVO stroke which could be used in the future to select patients for direct admission to a thrombectomy centre. METHODS AND ANALYSIS: Rapid Assay Diagnostic for Acute Stroke Recognition (RADAR) is a prospective observational cohort study taking place in stroke units in England. Participants are adults with a new suspected stroke with at least one face, arm or speech (FAST) symptom(s) and known onset within 6 hours or last known to be well 6-24 hours ago. The index test (\u27LVOne test\u27 (Upfront Diagnostics)), consists of two portable lateral flow assays which use fingerprick capillary blood to detect d-dimer and glial fibrillary acidic protein concentrations. Reference standards comprise independently adjudicated standard CT/MRI brain\ub1CT/MR angiography with senior clinician opinion to establish: ischaemic stroke\ub1LVO; intracerebral haemorrhage; transient ischaemic attack; stroke mimic. Analyses will report sensitivity, specificity and negative and positive predictive values for identification of LVO stroke. Powered using a primary analysis population (â„2 FAST symptoms and known onset within 6 hours), 276 participants will detect a test specificity of 92%. The broader total study population which allows evaluation of the test for milder symptoms and unknown onset times is estimated to be 552 participants. ETHICS AND DISSEMINATION: Ethical (North East-Newcastle & North Tyneside 2 Research Ethics Committee (reference: 23/NE/0043), Health Research Authority and participating National Health Service Trust approvals are granted. Consent is required for enrolment. Dissemination of results will include presentations at conferences, publication in journals and plain English summaries. TRIAL REGISTRATION NUMBER: ISRCTN12414986
Fumarate Hydratase Loss Causes Combined Respiratory Chain Defects.
Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid (TCA) cycle mutated in hereditary and sporadic cancers. Despite recent advances in understanding its role in tumorigenesis, the effects of FH loss on mitochondrial metabolism are still unclear. Here, we used mouse and human cell lines to assess mitochondrial function of FH-deficient cells. We found that human and mouse FH-deficient cells exhibit decreased respiration, accompanied by a varying degree of dysfunction of respiratory chain (RC) complex I and II. Moreover, we show that fumarate induces succination of key components of the iron-sulfur cluster biogenesis family of proteins, leading to defects in the biogenesis of iron-sulfur clusters that affect complex I function. We also demonstrate that suppression of complex II activity is caused by product inhibition due to fumarate accumulation. Overall, our work provides evidence that the loss of a single TCA cycle enzyme is sufficient to cause combined RC activity dysfunction
Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer
Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build > 280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies.Toxicolog
Recommended from our members
Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations
Circadian rhythms permeate all levels of biology to temporally regulate cell and whole-body physiology, although the cell-autonomous mechanism that confers ~24-h periodicity is incompletely understood. Reports describing circadian oscillations of over-oxidized peroxiredoxin abundance have suggested that redox signaling plays an important role in the timekeeping mechanism. Here, we tested the functional contribution that redox state and primary metabolism make to mammalian cellular timekeeping.
We found a circadian rhythm in flux through primary glucose metabolic pathways, indicating rhythmic NAD(P)H production. Using pharmacological and genetic perturbations, however, we found that timekeeping was insensitive to changes in glycolytic flux, whereas oxidative pentose phosphate pathway (PPP) inhibition and other chronic redox stressors primarily affected circadian gene expression amplitude, not periodicity. Finally, acute changes in redox state decreased PER2 protein stability, phase dependently, to alter the subsequent phase of oscillation.
Circadian rhythms in primary cellular metabolism and redox state have been proposed to play a role in the cellular timekeeping mechanism. We present experimental data testing that hypothesis.
Circadian flux through primary metabolism is cell autonomous, driving rhythmic NAD(P)(+) redox cofactor turnover and maintaining a redox balance that is permissive for circadian gene expression cycles. Redox homeostasis and PPP flux, but not glycolysis, are necessary to maintain clock amplitude, but neither redox nor glucose metabolism determines circadian period. Furthermore, cellular rhythms are sensitive to acute changes in redox balance, at least partly through regulation of PER protein. Redox and metabolic state are, thus, both inputs and outputs, but not state variables, of cellular circadian timekeeping.M.P. was supported by the Dutch Cancer Foundation (KWF, BUIT-2014-6637) and EMBO (ALTF-654-2014). J.S.O. was supported by the Medical Research Council (MC_UP_1201/4) and the Wellcome Trust (093734/Z/10/Z)
Early Neutrophilia Marked by Aerobic Glycolysis Sustains Host Metabolism and Delays Cancer Cachexia
An elevated neutrophilâlymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy
Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.
Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies
Synchronization in periodically driven and coupled stochastic systems-A discrete state approach
Wir untersuchen das Verhalten von stochastischen bistabilen und erregbaren Systemen auf der Basis einer Modellierung mit diskreten ZustĂ€nden. In ErgĂ€nzung zum bekannten Markovschen Zwei-Zustandsmodell bistabiler stochastischer Dynamik stellen wir ein nicht Markovsches Drei-Zustandsmodell fĂŒr erregbare Systeme vor. Seine relative Einfachheit, verglichen mit stochastischen Modellen erregbarer Dynamik mit kontinuierlichem Phasenraum, ermöglicht eine teilweise analytische Auswertung in verschiedenen ZusammenhĂ€ngen. ZunĂ€chst untersuchen wir den gemeinsamen EinfluĂ eines periodischen Treibens und Rauschens. Dieser wird entweder mit Hilfe spektraler GröĂen oder durch Synchronisation des Systems mit dem treibenden Signal charakterisiert. Wir leiten analytische AusdrĂŒcke fĂŒr die spektrale LeistungsverstĂ€rkung und das Signal-zu-Rauschen VerhĂ€ltnis fĂŒr periodisch getriebene Renewal-Prozesse her und wenden diese auf das diskrete Modell fĂŒr erregbare Dynamik an. Stochastische Synchronization des Systems mit dem treibenden Signal wird auf der Basis der Diffusionseigenschaften der Ăbergangsereignisse zwischen den diskreten ZustĂ€nden untersucht. Wir leiten allgemeine Formeln her, um die mittlere HĂ€ufigkeit dieser Ereignisse sowie deren effektiven Diffusionskoeffizienten zu berechnen. Ăber die konkrete Anwendung auf die untersuchten diskreten Modelle hinaus stellen diese Ergebnisse ein neues Werkzeug fĂŒr die Untersuchung periodischer Renewal-Prozesse dar. SchlieĂlich betrachten wir noch das Verhalten global gekoppelter bistabiler und erregbarer Systeme. Im Gegensatz zu bistabilen System können erregbare Systeme synchronisiert werden und zeigen kohĂ€rente Oszillationen. Alle Untersuchungen des nicht Markovschen Drei-Zustandsmodells werden mit dem prototypischen Modell fĂŒr erregbare Dynamik, dem FitzHugh-Nagumo System, verglichen und zeigen eine gute Ăbereinstimmung.We investigate the behavior of stochastic bistable and excitable dynamics based on a discrete state modeling. In addition to the well known Markovian two state model for bistable dynamics we introduce a non Markovian three state model for excitable systems. Its relative simplicity compared to stochastic models of excitable dynamics with continuous phase space allows to obtain analytical results in different contexts. First, we study the joint influence of periodic signals and noise, both based on a characterization in terms of spectral quantities and in terms of synchronization with the periodic driving. We present expressions for the spectral power amplification and signal to noise ratio for renewal processes driven by periodic signals and apply these results to the discrete model for excitable systems. Stochastic synchronization of the system to the driving signal is investigated based on diffusion properties of the transition events between the discrete states. We derive general results for the mean frequency and effective diffusion coefficient which, beyond the application to the discrete models considered in this work, provide a new tool in the study of periodically driven renewal processes. Finally the behavior of globally coupled excitable and bistable units is investigated based on the discrete state description. In contrast to the bistable systems, the excitable system exhibits synchronization and thus coherent oscillations. All investigations of the non Markovian three state model are compared with the prototypical continuous model for excitable dynamics, the FitzHugh-Nagumo system, revealing a good agreement between both models
Early Neutrophilia Marked by Aerobic Glycolysis Sustains Host Metabolism and Delays Cancer Cachexia
An elevated neutrophilâlymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy
- âŠ