7 research outputs found

    Modelos celulares de enfermedad mitocondrial causada por mutaciones en POLG

    Get PDF
    Las enfermedades mitocondriales constituyen un grupo de trastornos originados por una deficiente s铆ntesis de ATP por el sistema OXPHOS. Mutaciones en la DNA polimerasa mitocondrial gamma (POLG), 煤nica DNA polimerasa mitocondrial humana conocida y esencial para la replicaci贸n y reparaci贸n del DNA mitocondrial, producen diversas enfermedades mitocondriales con manifestaciones cl铆nicas muy heterog茅neas. Sin embargo, estas mutaciones tienen en com煤n la presencia de diversos grados de afectaci贸n neuronal, que lleva a neurodegeneraci贸n. A pesar de que el cerebro representa solo el 2 % del peso corporal, consume el 20 % de la energ铆a corporal. La mayor parte de esta energ铆a es consumida por las neuronas y es el sistema OXPHOS el que la produce. Con el objetivo final de caracterizar el efecto de mutaciones patol贸gicas de la DNA polimerasa mitocondrial gamma en la diferenciaci贸n neuronal y en el sistema OXPHOS de neuronas maduras, en este trabajo, se han caracterizado a nivel gen茅tico, molecular y funcional l铆neas celulares derivadas de neuroblastoma (que pueden diferenciarse a neurona) sobreexpresando POLG silvestre, POLG con una variante portadora de una mutaci贸n autos贸mica dominante o POLG con una variante previamente asociada a Parkinson. Con estos estudios, hemos comprobado que la sobreexpresi贸n de la mutaci贸n patol贸gica afecta a la replicaci贸n del DNA mitocondrial en la l铆nea SH-SY5Y en cultivo, quedando disponible para comenzar los estudios de diferenciaci贸n neuronal. Por otro lado, se han caracterizado a nivel gen茅tico y molecular 3 l铆neas c铆bridas para los haplogrupos mitocondriales: H, UK y J, derivadas de neuroblastoma sobreexpresando POLG silvestre, o la variante de POLG previamente asociada a Parkinson. Una vez caracterizadas se estudiar谩 el efecto combinado que pueden tener variaciones gen茅ticas mitocondriales y nucleares en la diferenciaci贸n a neurona dopamin茅rgica

    Mutaciones nucleares que afectan al sistema de fosforilaci贸n oxidativa

    Get PDF
    Las mitocondrias son org谩nulos din谩micos que albergan rutas metab贸licas esenciales para la vida. Entre ellas, la fosforilaci贸n oxidativa (OXPHOS) que proporciona la mayor parte de la energ铆a 煤til a las c茅lulas del cuerpo. Los defectos en su funcionamiento generan las enfermedades de la cadena respiratoria, dif铆ciles de diagnosticar debido a la gran heterogeneidad cl铆nica que presentan los pacientes. La utilizaci贸n de las t茅cnicas modernas de secuenciaci贸n masiva ha permitido identificar variaciones gen茅ticas en el genoma de muchos pacientes. Esto no siempre lleva a un diagn贸stico molecular porque la interpretaci贸n de las variaciones en el DNA puede resultar muy compleja. En algunos casos afectan a prote铆nas cuya funci贸n no se conoce o no se relaciona con la ruta biol贸gica afectada.En este trabajo se han estudiado los defectos moleculares causados por mutaciones encontradas en genes nucleares de pacientes diagnosticados con enfermedad mitocondrial, siendo el objetivo principal la obtenci贸n de un diagn贸stico gen茅tico-molecular de estos pacientes. Se han analizado fibroblastos derivados de tres pacientes con mutaciones en los genes POLG, NDUFAF6 y ATAD3C respectivamente.Se describe el caso de una paciente, diagnosticada con enfermedad mitocondrial, con dos mutaciones en heterocigosis compuesta en POLG. El estudio cl铆nico, junto con las diferencias in vitro en la cin茅tica de recuperaci贸n del mtDNA de las c茅lulas de control y de paciente, sugieren que los s铆ntomas de enfermedad mitocondrial fueron precipitados por una infecci贸n por Borrelia y, posiblemente, empeoraron por el tratamiento farmacol贸gico. Este estudio demuestra la importancia de diagn贸sticos gen茅ticos tempranos de los pacientes y la necesidad de considerar los riesgos y beneficios en la selecci贸n de tratamientos farmacol贸gicos para pacientes con sospecha de des贸rdenes mitocondriales.A continuaci贸n, se describen tres hermanos diagnosticados con el S铆ndrome de Leigh con dos mutaciones en heterocigosis compuesta en NDUFAF6, factor esencial para la maduraci贸n y actividad del complejo I de la cadena de transporte de electrones. Los ensayos funcionales de complementaci贸n gen茅tica permitieron obtener la evidencia conclusiva de la patogenicidad en esta familia.Por 煤ltimo, se describe el estudio del primer caso de mutaciones en el gen ATAD3C en un paciente diagnosticado con enfermedad mitocondrial. La asociaci贸n de su fenotipo con las mutaciones es un reto, debido a que existe muy poca informaci贸n sobre ATAD3C en la literatura, podr铆a ser un pseudog茅n y no hay casos previos descritos. En este trabajo, se ha confirmado que ATAD3C genera una prote铆na mitocondrial que se localiza en la membrana mitocondrial interna, que es capaz de oligomerizar de la misma manera que ATAD3A, y que puede interaccionar con el complejo que forma ATAD3A regulando su funci贸n. Estos hallazgos proporcionan un posible mecanismo por el que mutaciones en ATAD3C puedan llevar a patolog铆a en humanos<br /

    Uridine Prevents Negative Effects of OXPHOS Xenobiotics on Dopaminergic Neuronal Differentiation

    Get PDF
    Neuronal differentiation appears to be dependent on oxidative phosphorylation capacity. Several drugs inhibit oxidative phosphorylation and might be detrimental for neuronal differentiation. Some pregnant women take these medications during their first weeks of gestation when fetal nervous system is being developed. These treatments might have later negative consequences on the offspring鈥檚 health. To analyze a potential negative effect of three widely used medications, we studied in vitro dopaminergic neuronal differentiation of cells exposed to pharmacologic concentrations of azidothymidine for acquired immune deficiency syndrome; linezolid for multidrug-resistant tuberculosis; and atovaquone for malaria. We also analyzed the dopaminergic neuronal differentiation in brains of fetuses from pregnant mice exposed to linezolid. The drugs reduced the in vitro oxidative phosphorylation capacity and dopaminergic neuronal differentiation. This differentiation process does not appear to be affected in the prenatally exposed fetus brain. Nevertheless, the global DNA methylation in fetal brain was significantly altered, perhaps linking an early exposure to a negative effect in older life. Uridine was able to prevent the negative effects on in vitro dopaminergic neuronal differentiation and on in vivo global DNA methylation. Uridine could be used as a protective agent against oxidative phosphorylation-inhibiting pharmaceuticals provided during pregnancy when dopaminergic neuronal differentiation is taking place

    Brain pyrimidine nucleotide synthesis and Alzheimer disease

    Get PDF
    Many patients suffering late-onset Alzheimer disease show a deficit in respiratory complex IV activity. The de novo pyrimidine biosynthesis pathway connects with the mitochondrial respiratory chain upstream from respiratory complex IV. We hypothesized that these patients would have decreased pyrimidine nucleotide levels. Then, different cell processes for which these compounds are essential, such as neuronal membrane generation and maintenance and synapses production, would be compromised. Using a cell model, we show that inhibiting oxidative phosphorylation function reduces neuronal differentiation. Linking these processes to pyrimidine nucleotides, uridine treatment recovers neuronal differentiation. To unmask the importance of these pathways in Alzheimer disease, we firstly confirm the existence of the de novo pyrimidine biosynthesis pathway in adult human brain. Then, we report altered mRNA levels for genes from both de novo pyrimidine biosynthesis and pyrimidine salvage pathways in brain from patients with Alzheimer disease. Thus, uridine supplementation might be used as a therapy for those Alzheimer disease patients with low respiratory complex IV activity

    Molecular characterization of new FBXL4 mutations in patients with mtDNA depletion syndrome

    Get PDF
    Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is a rare genetic disorder caused by defects in F-box leucine-rich repeat protein 4 (FBXL4). Although FBXL4 is essential for the bioenergetic homeostasis of the cell, the precise role of the protein remains unknown. In this study, we report two cases of unrelated patients presenting in the neonatal period with hyperlactacidemia and generalized hypotonia. Severe mtDNA depletion was detected in muscle biopsy in both patients. Genetic analysis showed one patient as having in compound heterozygosis a splice site variant c.858+5G>C and a missense variant c.1510T>C (p.Cys504Arg) in FBXL4. The second patient harbored a frameshift novel variant c.851delC (p.Pro284LeufsTer7) in homozygosis. To validate the pathogenicity of these variants, molecular and biochemical analyses were performed using skin-derived fibroblasts. We observed that the mtDNA depletion was less severe in fibroblasts than in muscle. Interestingly, the cells harboring a nonsense variant in homozygosis showed normal mtDNA copy number. Both patient fibroblasts, however, demonstrated reduced mitochondrial transcript quantity leading to diminished steady state levels of respiratory complex subunits, decreased respiratory complex IV (CIV) activity, and finally, low mitochondrial ATP levels. Both patients also revealed citrate synthase deficiency. Genetic complementation assays established that the deficient phenotype was rescued by the canonical version of FBXL4, confirming the pathological nature of the variants. Further analysis of fibroblasts allowed to establish that increased mitochondrial mass, mitochondrial fragmentation, and augmented autophagy are associated with FBXL4 deficiency in cells, but are probably secondary to a primary metabolic defect affecting oxidative phosphorylation

    ATAD3C regulates ATAD3A assembly and function in the mitochondrial membrane

    Get PDF
    Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell
    corecore