100 research outputs found

    The photons payload, G-494: A learning experience

    Get PDF
    PHOTONS (Photometric Thermospheric Oxygen Nightglow Study) is an optical remote sensing payload developed for Get Away Special (GAS) flight by the National Research Council of Canada. The device is extremely sensitive and is suitable for making measurements of low intensity, aeronomically generated atmospheric emissions in the nadir and the limb and of Shuttle ram glow. The unit uses a sealed canister and UV transmitting viewing ports. During the flight of STS 61-C, PHOTONS received one hour of operation and aeronomic observations were made. Good diagnostic data were obtained and the science part of the experiment malfunctioned. Post flight inspection revealed that the payload was in perfect working order except for total failure of the photomultiplier detectors. The experiment and the payload are described and the flight results are discussed along with the cause of the malfunctions. It is shown that enough was learned from the flight diagnostic data and about the cause of the malfunction to conclude that the engineering flight was successful and that subsequent flight of the PHOTONS payload will be productive

    On the variability of I(7620 Ă…)/I(5577 Ă…) in low altitude aurora

    No full text
    International audienceAn auroral electron excitation model, combined with simple equilibrium neutral and ion chemistry models, is used to investigate the optical emission processes and height profiles of I(5577 Ă…) and I(7620 Ă…) in the 90 to 100 km altitude region. It is shown that the apparent discrepancies between ground-based and rocket-borne auroral observations of the I(7620 Ă…)/I(5577 Ă…) ratio are due to the extreme height variation of this intensity ratio in the 90 to 100 km region

    Optical and Radar Characterization of a Short-Lived Auroral Event at High Latitude

    Get PDF
    Observations of optical emission intensities and incoherent scatter radar returns in the magnetic zenith were compared in a study carried out at Sondre Stromfjord (Λ = 76.1°) in Greenland. The results were used to test the consistency of a theoretical model of ion chemistry and optical emissions in aurora and to explore the accuracy of relations between optical measurements and the average energy of the incident electrons. The incident primary electron spectrum and its temporal variation were inferred from zenith electron density profiles from the radar. The inferred primary energy spectrum at the peak intensity of the event approximated a Maxwellian distribution of characteristic energy 1.3 keV accelerated by an energy increment between 2 and 5 keV. Average energies inferred from the radar electron density profiles, from the N2 + rotational temperature and the I(6300)/I(4278) ratio were in good agreement. The variation of the I(8446)/I(4278) ratio was studied and was found to be promising as an index of average incident electron energy. An empirical relation between this ratio and average energy was derived from the data. The observed values of I(4278) exceeded the theoretical values derived from the ionization rate profiles deduced from the radar data by a factor near 2.0. Observed electron density profiles and theoretical profiles calculated from optical data were in good agreement provided that the optically inferred ion production rates were reduced by the same factor of 2. This discrepancy is probably the cumulative result of small errors in instrument calibrations, viewing geometry, recombination coefficients and the excitation and ionization cross sections used in the model

    The Roles of Vertical Advection and Eddy Diffusion in the Equatorial Mesospheric Semi-Annual Oscillation (MSAO)

    Get PDF
    Observations of the mesospheric semi-annual oscillation (MSAO) in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. A broad range of MSAO measurements is summarised with emphasis on the 80-100 km region. The objective here is not to address directly the complicated driving forces of the MSAO, but rather to employ a combination of observations and model simulations to estimate the limits of some of the underlying dynamical processes. Photochemical model simulations are included for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are incorporated in the model to facilitate comparisons of observations made at different local times. The roles of water vapour as the driver species and ozone as the response species are examined to test for consistency between the model results and observations. The simulations suggest the interactions between vertical eddy diffusion and background vertical advection play a significant role in the MSAO phenomenon. Further, the simulations imply there are rigid limits on vertical advection rates and eddy diffusion rates. For August at the Equator, 90 km altitude, the derived eddy diffusion rate is approximately 1 x 106 cm2 s-1 and the vertical advection is upwards at 0.8 cm s-1. For April the corresponding values are 4 x 105 cm2 s-1 and 0.1 cm s-1. These results from the current 1-D model simulations will need to be verified by a full 3-D simulation. Exactly how vertical advection and eddy diffusion are related to gravity wave momentum as discussed by Dunkerton (1982) three decades ago remains to be addressed

    Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films

    Full text link
    The transport properties of organic light-emitting diodes in which the emissive layer is composed of conjugated polymers in the liquid-crystalline phase have been investigated. We have performed simulations of the current transient response to an illumination pulse via the Monte Carlo approach, and from the transit times we have extracted the mobility of the charge carriers as a function of both the electric field and the temperature. The transport properties of such films are different from their disordered counterparts, with charge carrier mobilities exhibiting only a weak dependence on both the electric field and temperature. We show that for spatially ordered polymer films, this weak dependence arises for thermal energy being comparable to the energetic disorder, due to the combined effect of the electrostatic and thermal energies. The inclusion of spatial disorder, on the other hand, does not alter the qualitative behaviour of the mobility, but results in decreasing its absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Does conversion to reduced tillage really increase soil organic carbon stocks in organic arable farming?

    Get PDF
    Aggravation of weather extremes increases awareness of climate change consequences. Mitigation options are in demand that aim to reduce the atmospheric concentration of greenhouse gases. Amongst others, the conversion from ploughing to reduced tillage is argued to increase soil organic carbon (SOC) stocks as an accumulation of SOC in topsoil layers is commonly reported. Yet, reviews and meta-analyses describe various results from significant increases to just a redistribution of SOC in the soil profile. Reasons can be found in different sampling depths, SOC and bulk density measurement procedure, and stock calculation (equivalent soil mass vs. equal sampling depth). Furthermore, few studies evaluated the impact of organic farming systems. In nine long-term experiments on tillage systems in temperate Europe (France, Germany, Netherlands, and Switzerland), a common soil sampling campaign took place in spring and autumn 2017, and spring 2018. All trials represent common mixed organic farming systems of the respective region and contain plots with conventional and reduced tillage practices. While climatic conditions are similar, soil types vary from sandy to clayey soils. We took three undisturbed soil cores with driving hammer probes (8 cm in diameter) in each plot (minimum 3 plots per treatment) to a maximum depth of 100 cm and divided the cores in the increments 0-30, 30-50, 50-70, and 70-100 cm. The topsoil (0-30 cm) was further divided into the different tillage depths of the respective trial. We determined bulk density and organic carbon concentration as main variables and soil texture and pH as co-variates for each sample and collected C-inputs for each plot in all trails on a yearly basis. Multivariate statistics will enable the comprehensive evaluation of tillage effects on SOC stocks up to a depth of 100 cm in organic long-term trials. Texture, trial age, and the co-variate C-input will be decisive for the development of SOC stocks and enable the evaluation of carbon sequestration potentials of agricultural soils through improved tillage practices

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    The aries auroral modelling campaign: characterization and modelling of an evening auroral arc observed from a rocket and a ground-based line of meridian scanners

    Full text link
    An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 A were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 A, while the 8446 A emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 A emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1-2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 A OI emission and the 4709 A N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38-50; this is equivalent to I(5577)/I(4278) ratios of 8-10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8-10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29020/1/0000050.pd
    • …
    corecore